49 research outputs found

    Spectrum Usage for 5G Mobile Communication Systems and Electromagnetic Compatibility with Existent Technologies

    Get PDF
    The increased demand of consumers on services in the mobile broadband environment with high data rate and developed mobile broadband communication systems will require more spectrum to be available in the future. New technologies as well as the existing services require frequencies for their development. In this chapter, we investigate the available and potential future mobile terrestrial radio frequency bands (5G)—worldwide and in Europe. An insight into the mobile spectrum estimate is provided. Characteristics and requirements of IMT-2020, future possible IMT frequency bands, and examples of 5G usage scenarios are also addressed in the chapter. Electromagnetic compatibility evaluation methods are provided mainly focusing on existent mobile technologies below 1 GHz where also 5G technologies will be developed in the future. It is stressed that the radio frequency spectrum is a limited national resource that will become increasingly precious in the future

    Prospects of 5G Satellite Networks Development

    Get PDF
    In the future, 5G networks will represent the global telecommunication infrastructure of the digital economy, which should cover the whole world including inaccessible areas not covered by 5G terrestrial networks. Given this, the satellite segment of 5G networks becomes one of the pressing issues of development and standardization at the second stage of 5G networks development in the period 2020–2025. The requirements for 5G satellite network will be determined primarily by combination of key services supported by 5G networks, which are combined by three basic business models of 5G terrestrial networks: enhanced Mobile Broadband Access (eMBB), Massive Internet of Things connections (mIoT), and Ultra-reliable low-latency communication (uRLLC). 3GPP as leading international standards body has identified several use cases and scenarios of 5G satellite networks development. 5G satellite networks are understood to mean networks in which the NG-RAN radio access network is constructed using a satellite network technology. The chapter has discussed the spectral and technological aspects of 5G satellite network developments, issues of architecture and role of delays on quality of services of 5G satellite segment, and possibility of constructing a 5G satellite segment based on distributed and centralized gNB base stations. The issues of satellite payload utilization have considered for bent-pipe and on-board processing technologies in 5G satellite segment

    The Feasibility of Coexistence Between 5G and Existing Services in the IMT-2020 Candidate Bands in Malaysia

    Get PDF
    In 2015, the international telecommunication union (ITU) proposed 11 candidate millimeter-wave bands between 24 and 86 GHz for the deployment of future fifth mobile generation (5G) broadband systems. Furthermore, the ITU called for spectrum-sharing studies in these bands. Since 5G specifications are not yet defined, the utilization of radio spectrum by 5G mobile systems will assist in identifying these specifications. This paper introduces Malaysia as a case study for the deployment of 5G systems. This includes a discussion of the current status of the Malaysian telecommunication market. Then, we investigate the current services that are already deployed in the proposed bands. Our investigation shows that the fixed (F) service is the most deployed as a primary service in the candidate bands. For this reason, a preliminary spectrum-sharing study is conducted on the basis of a modified 5G spectrum-sharing model to evaluate the feasibility of coexistence between 5G and F services in the 28-GHz band. Our modified methodology can be used for spectrum-sharing studies between 5G and any other services for an initial spectrum-sharing investigation. The results show that the F service will be severely affected by the 5G system transition in the 28-GHz band, especially in the base station (BS)-to-BS sharing scenario. The best band from the perspective of current spectrum allocation for 5G systems is the 45-GHz (i.e., 45.5-47 GHz) band, since it is already reserved for mobile service for primary allocation and not utilized. This paper is carried out concurrently with current worldwide efforts investigating spectrum sharing, as requested by the ITU in agenda item 1.13 for the next world radio conference 2019

    A survey of 5G technologies: regulatory, standardization and industrial perspectives

    Get PDF
    In recent years, there have been significant developments in the research on 5th Generation (5G) networks. Several enabling technologies are being explored for the 5G mobile system era. The aim is to evolve a cellular network that is intrinsically flexible and remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. All the stakeholders, such as regulatory bodies, standardization authorities, industrial fora, mobile operators and vendors, must work in unison to bring 5G to fruition. In this paper, we aggregate the 5G-related information coming from the various stakeholders, in order to i) have a comprehensive overview of 5G and ii) to provide a survey of the envisioned 5G technologies; their development thus far from the perspective of those stakeholders will open up new frontiers of services and applications for next-generation wireless networks. Keywords: 5G, ITU, Next-generation wireless network

    Projections of iot applications in Colombia using 5G wireless networks

    Get PDF
    Wireless technologies are increasingly relevant in different activities and lines of the economy, as well as in the daily life of people and companies. The advent of fifth generation networks (5G) implies a promising synergy with the Internet of Things (IoT), allowing for more automations in production processes and an increase in the efficiency of information transmission, managing to improve the efficiency in decision-making through tools such as big data and artificial intelligence. This article presents a description of the 5G implementation process in Colombia, as well as a revision of opportunities when combining with IoT in featured sectors of the departmental development plans, such as agriculture, tourism, health, the environment, and industry. Results shows that the startup of 5G in Colombia has been a slow process, but there are comparisons with similar procedures in other developed countries. Additionally, we present examples of 5G and IoT applications which can be promoted in Colombia, aimed at improving the quality of life of their habitants and promoting economic development

    Projections of IoT Applications in Colombia Using 5G Wireless Networks

    Get PDF
    Wireless technologies are increasingly relevant in different activities and lines of the economy, as well as in the daily life of people and companies. The advent of fifth generation networks (5G) implies a promising synergy with the Internet of Things (IoT), allowing for more automations in production processes and an increase in the efficiency of information transmission, managing to improve the efficiency in decision-making through tools such as big data and artificial intelligence. This article presents a description of the 5G implementation process in Colombia, as well as a revision of opportunities when combining with IoT in featured sectors of the departmental development plans, such as agriculture, tourism, health, the environment, and industry. Results shows that the startup of 5G in Colombia has been a slow process, but there are comparisons with similar procedures in other developed countries. Additionally, we present examples of 5G and IoT applications which can be promoted in Colombia, aimed at improving the quality of life of their habitants and promoting economic development.Ibero-American Postgraduate University Association (AUIP

    The ITU IMT-2020 Standardization: Lessons from 5G and Future Perspectives for 6G

    Get PDF
    The evaluation of candidate International Mobile Telecommunications-2020 (IMT-2020) radio interfaces ended in February 2021, with three technologies being approved while another two were granted additional time to demonstrate their suitability. This marks a useful milestone at which the International Mobile Telecommunications (IMT) standardization process can be evaluated, and its implications for 6G explored. We argue that the relationship between IMT standardization and identification is increasingly problematic, with identification requiring the refarming of spectrum already allocated to other services. Furthermore, as standardization is largely done outside of the International Telecommunication Union (ITU), being part of IMT is largely a way to obtain more spectrum. While these developments question the value of the existing approach, we argue that changes are necessary to the IMT standardization processes given the value to be gained from a single global mobile standard
    corecore