130 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des donnĂ©es, le trafic de donnĂ©es mobiles a augmentĂ© de 4000 fois au cours des 10 derniĂšres annĂ©es et prĂšs de 400millions fois au cours des 15 derniĂšres annĂ©es. Les rĂ©seaux cellulaires homogĂšnes rencontrent de plus en plus de difficultĂ©s Ă  gĂ©rer l’énorme trafic de donnĂ©es mobiles et Ă  assurer un dĂ©bit plus Ă©levĂ© et une meilleure qualitĂ© d’expĂ©rience pour les utilisateurs.Ces difficultĂ©s sont essentiellement liĂ©es au spectre disponible et Ă  la capacitĂ© du rĂ©seau.L’industrie de tĂ©lĂ©communication doit relever ces dĂ©fis et en mĂȘme temps doit garantir un modĂšle Ă©conomique pour les opĂ©rateurs qui leur permettra de continuer Ă  investir pour rĂ©pondre Ă  la demande croissante et rĂ©duire l’empreinte carbone due aux communications mobiles. Les rĂ©seaux cellulaires hĂ©tĂ©rogĂšnes (HetNets), composĂ©s de stations de base macro et de diffĂ©rentes stations de base de faible puissance,sont considĂ©rĂ©s comme la solution clĂ© pour amĂ©liorer l’efficacitĂ© spectrale par unitĂ© de surface et pour Ă©liminer les trous de couverture. Dans de tels rĂ©seaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gĂ©rer les interfĂ©rences afin de gagner en performance. Comme la diffĂ©rence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptĂ©e dans les HetNets. Une technique basĂ©e sur des offsets individuelles par cellule Offset(CIO) est donc nĂ©cessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutĂ©e Ă  la valeur moyenne de la puissance reçue du signal de rĂ©fĂ©rence(RSRP) mesurĂ©e par le mobile et peut donc induire Ă  un changement d’attachement vers diffĂ©rents eNodeB. Comme les stations de bases dans les rĂ©seaux cellulaires LTE utilisent les mĂȘmes sous-bandes de frĂ©quences, les mobiles peuvent connaĂźtre une forte interfĂ©rence intercellulaire, en particulier en bordure de cellules. Par consĂ©quent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interfĂ©rence entre les cellules. Pour attĂ©nuer la forte interfĂ©rence intercellulaire, les ressources, en termes de temps, frĂ©quence et puissance d’émission, devraient ĂȘtre allouĂ©s efficacement. Un modĂšle pour chaque dimension est calculĂ© pour permettre en particulier aux utilisateurs en bordure de cellule de bĂ©nĂ©ficier d’un dĂ©bit plus Ă©levĂ© et d’une meilleure qualitĂ© de l’expĂ©rience. L’optimisation de tous ces paramĂštres peut Ă©galement offrir un gain en consommation d’énergie. Dans cette thĂšse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les rĂ©seaux cellulaires LTE maximisant une fonction d’utilitĂ© du rĂ©seau qui peut ĂȘtre choisie de maniĂšre adĂ©quate.Notre solution, basĂ©e sur la thĂ©orie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance Ă  appliquer au niveau temporel et frĂ©quentiel pour chaque cellule. Nous prĂ©sentons des rĂ©sultats des simulations effectuĂ©es pour illustrer le gain de performance important apportĂ© par cette optimisation. Nous obtenons une significative hausse dans le dĂ©bit moyen et le dĂ©bit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en Ă©nergie. Ce travail aborde des dĂ©fis pour l’industrie des tĂ©lĂ©coms et en tant que tel, un prototype de l’optimiseur a Ă©tĂ© implĂ©mentĂ© en se basant sur un trafic HetNets Ă©mulĂ©

    Topology and interference analysis in macrocellular environment

    Get PDF
    In the present day, mobile based data services have become increasingly popular among end users and businesses and thus considered as one of the important issues in the telecommunication network, because of its high demand. The telecommunication industry is continuously striving to fulfil this demand in a cost-efficient manner. Fundamentally, the performance of a mobile communication network is constrained by the propagation environment and technical capabilities of the network equipment. The target of radio network engineers is to design and deploy a mobile network that provides effective coverage and capacity solution with a profitable implementation cost. In order to reach this target, careful examination of radio network planning and choosing the right tools are the key methods. Network densification is considered as a feasible evolutionary pathway to fulfil the exponentially increasing data capacity demand in mobile networks. The objective of this thesis work is to study and analyse the densification of classical macrocellular network, which is still the dominant form of deployment worldwide. The analysis is based on deep ray-tracing based propagation simulations in the outdoor and indoor environment, and considers two key performance metrics; cell spectral efficiency and area spectral efficiency. For analysing the impact of network densification, different cell densities, obtained from varying the inter-site distances are considered. Furthermore, the network is assumed to be operating in a full load condition; an extreme condition in which the base stations are transmitting at full power. From the simulations, it has been illustrated that as a result of densifying the network, the inter-cell interference increases, which reduce the achievable cell spectral efficiency. The system capacity, on the other hand, is shown to improve due to the increase in the area spectral efficiency, as a result of high-frequency re-use, in the outdoor settings. Nevertheless, it is observed that the densification of macrocellular network experience inefficiency in the indoor environment; mainly arising from coverage limitation due to extreme antenna tilt angles. This calls for sophisticated methods such as base station coordination or inter-cell interference cancellation technique to be employed for future cellular network. For fulfilling the indoor capacity demand in a cost-efficient manner, the operators will be required to deploy dedicated indoor small cells based solutions

    Soft – Partial Frequency Reuse Method for LTE-A

    Get PDF
    In the paper a novel SPFR frequency reuse method is proposed which can be used for improvement of physical resources utilization efficiency in LTE-A. The proposed method combines both SFR and PFR giving the possibility of more flexible use of frequency band in different regions of a cell. First, a short study on the problem of frequency reuse in cells is discussed including bibliography overview. In next section the principle of the proposed SPFR method is described. Then the simulation model is discussed and simulation parameters are expected. In the last part, results of simulation of SPFR efficiency in comparison to known frequency reuse methods are presented. Presented results include both capacity and throughput for single connection. The proposed method eliminates main disadvantages of both SFR and PFR methods and gives significantly greater capacity of radio interface in boundary region of cells
    • 

    corecore