430 research outputs found

    A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems

    Get PDF
    To mitigate intercarrier interference (ICI), a two-path algorithm is developed for multicarrier communication systems, including orthogonal frequency division multiplexing (OFDM) systems. The first path employs the regular OFDM algorithm. The second path uses the conjugate transmission of the first path. The combination of both paths forms a conjugate ICI cancellation scheme at the receiver. This conjugate cancellation (CC) scheme provides (1) a high signal to interference power ratio (SIR) in the presence of small frequency offsets (50 dB and 33 dB higher than that of the regular OFDM and linear self-cancellation algorithms [1], [2], respectively, at ΔfT = 0.1% of subcarrier frequency spacing); (2) better bit error rate (BER) performance in both additive white Gaussian noise (AWGN) and fading channels; (3) backward compatibility with the existing OFDM system; (4) no channel equalization is needed for reducing ICI, a simple low cost receiver without increasing system complexity. Although the two-path transmission reduces bandwidth efficiency, the disadvantage can be balanced by increasing signal alphabet sizes

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    ICI Cancellation in OFDM Systems by Frequency Offset Reduction

    Get PDF
    With the rapid growth of digital communication in recent years, the need for high speed data transmission is increased. Moreover, future wireless systems are expected to support a wide range of services which includes video, data and voice. OFDM is a promising candidate for achieving high data rates in mobile environment because of its multicarrier modulation technique and ability to convert a frequency selective fading channel into several nearly flat fading channels. Now OFDM is being widely used in wireless communications standards, such as IEEE 802.11a, the multimedia mobile access communication (MMAC), and the HIPERLAN/2. However, one of the main disadvantages of OFDM is its sensitivity against carrier frequency offset which causes inter carrier interference (ICI). A well-known problem of orthogonal frequency division multiplexing (OFDM), however, is its sensitivity to frequency offset between the transmitted and received signals, which may be caused by Doppler shift in the channel, or by the difference between the transmitter and receiver local oscillator frequencies. This carrier frequency offset causes loss of orthogonality between sub-carriers and the signals transmitted on each carrier are not independent of each other. The orthogonality of the carriers is no longer maintained, which results in inter-carrier interference (ICI). The undesired ICI degrades the performance of the system. Depending on the Doppler spread in the channel and the block length chosen for transmission, ICI can potentially cause a severe deterioration of quality of service (QOS) in OFDM systems. ICI mitigation techniques are essential in improving the performance of an OFDM system in an environment which induces frequency offset error in the transmitted signal. The comparisons of these schemes in terms of various parameters will be useful in determining the choice of ICI mitigation techniques for different applications and mobile environments. This project investigates an efficient ICI cancellation method termed ICI self-cancellation scheme for combating the impact of ICI on OFDM systems. The ICI self-cancellation scheme is a technique in which redundant data is transmitted onto adjacent sub-carriers such that the ICI between adjacent sub-carriers cancels out at the receiver. The main idea is one data symbol is modulated onto a group of adjacent subcarriers with a group of weighting coefficients. By doing so, the ICI signals generated within a group can be self-cancelled each other. At the receiver side, by linearly combining the received signals on these subcarriers with proposed coefficients, the residual ICI contained in the received signals can then be further reduced. Although the proposed scheme causes a reduction in bandwidth efficiency, it can be compensated, by using larger signal alphabet sizes in modulation. The average carrier-to-interference power ratio (CIR) is used as the ICI level indicator, and a theoretical CIR expression is derived for the proposed scheme. The proposed scheme provides significant CIR improvement, which has been studied theoretically and supported by simulations. Simulation results show that under the condition of the same bandwidth efficiency and larger frequency offsets, the proposed OFDM system using the ICI self-cancellation scheme per- forms much better than standard OFDM systems in AWGN channel with large Doppler frequencies. In addition, since no channel equalization is needed for reducing ICI, the proposed scheme is therefore beneficial in implementation issue without increasing system complexit

    An Improved ICI Self Cancellation Scheme for OFDM Systems Under Various Channels

    Get PDF
    Inter Carrier Interference (ICI) is being introduced in OFDM due to the carrier frequency offset (CFO), which will degrade the system performance and efficiency at higher modulation levels and it decreases the performance of power amplifiers. Hence, here in this paper, we introduced a novel ICI reduction algorithms cancellation under the various channel environments such as AWGN, Rayleigh and also Rician. Simulation results have been compared with existing and proposed schemes under these channel specifications and concluded that the Rayleigh has performed far better than the AWGN and Rician channel distributions in terms of Bit Error Rate (BER) and Carrier interference Ration (CIR) performance

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five
    • …
    corecore