154 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Hardware Acceleration of Video analytics on FPGA using OpenCL

    Get PDF
    abstract: With the exponential growth in video content over the period of the last few years, analysis of videos is becoming more crucial for many applications such as self-driving cars, healthcare, and traffic management. Most of these video analysis application uses deep learning algorithms such as convolution neural networks (CNN) because of their high accuracy in object detection. Thus enhancing the performance of CNN models become crucial for video analysis. CNN models are computationally-expensive operations and often require high-end graphics processing units (GPUs) for acceleration. However, for real-time applications in an energy-thermal constrained environment such as traffic management, GPUs are less preferred because of their high power consumption, limited energy efficiency. They are challenging to fit in a small place. To enable real-time video analytics in emerging large scale Internet of things (IoT) applications, the computation must happen at the network edge (near the cameras) in a distributed fashion. Thus, edge computing must be adopted. Recent studies have shown that field-programmable gate arrays (FPGAs) are highly suitable for edge computing due to their architecture adaptiveness, high computational throughput for streaming processing, and high energy efficiency. This thesis presents a generic OpenCL-defined CNN accelerator architecture optimized for FPGA-based real-time video analytics on edge. The proposed CNN OpenCL kernel adopts a highly pipelined and parallelized 1-D systolic array architecture, which explores both spatial and temporal parallelism for energy efficiency CNN acceleration on FPGAs. The large fan-in and fan-out of computational units to the memory interface are identified as the limiting factor in existing designs that causes scalability issues, and solutions are proposed to resolve the issue with compiler automation. The proposed CNN kernel is highly scalable and parameterized by three architecture parameters, namely pe_num, reuse_fac, and vec_fac, which can be adapted to achieve 100% utilization of the coarse-grained computation resources (e.g., DSP blocks) for a given FPGA. The proposed CNN kernel is generic and can be used to accelerate a wide range of CNN models without recompiling the FPGA kernel hardware. The performance of Alexnet, Resnet-50, Retinanet, and Light-weight Retinanet has been measured by the proposed CNN kernel on Intel Arria 10 GX1150 FPGA. The measurement result shows that the proposed CNN kernel, when mapped with 100% utilization of computation resources, can achieve a latency of 11ms, 84ms, 1614.9ms, and 990.34ms for Alexnet, Resnet-50, Retinanet, and Light-weight Retinanet respectively when the input feature maps and weights are represented using 32-bit floating-point data type.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators

    Full text link
    We show that DNN accelerator micro-architectures and their program mappings represent specific choices of loop order and hardware parallelism for computing the seven nested loops of DNNs, which enables us to create a formal taxonomy of all existing dense DNN accelerators. Surprisingly, the loop transformations needed to create these hardware variants can be precisely and concisely represented by Halide's scheduling language. By modifying the Halide compiler to generate hardware, we create a system that can fairly compare these prior accelerators. As long as proper loop blocking schemes are used, and the hardware can support mapping replicated loops, many different hardware dataflows yield similar energy efficiency with good performance. This is because the loop blocking can ensure that most data references stay on-chip with good locality and the processing units have high resource utilization. How resources are allocated, especially in the memory system, has a large impact on energy and performance. By optimizing hardware resource allocation while keeping throughput constant, we achieve up to 4.2X energy improvement for Convolutional Neural Networks (CNNs), 1.6X and 1.8X improvement for Long Short-Term Memories (LSTMs) and multi-layer perceptrons (MLPs), respectively.Comment: Published as a conference paper at ASPLOS 202
    • …
    corecore