56,807 research outputs found

    Subtraction-noise projection in gravitational-wave detector networks

    Get PDF
    In this paper, we present a successful implementation of a subtraction-noise projection method into a simple, simulated data analysis pipeline of a gravitational-wave search. We investigate the problem to reveal a weak stochastic background signal which is covered by a strong foreground of compact-binary coalescences. The foreground which is estimated by matched filters, has to be subtracted from the data. Even an optimal analysis of foreground signals will leave subtraction noise due to estimation errors of template parameters which may corrupt the measurement of the background signal. The subtraction noise can be removed by a noise projection. We apply our analysis pipeline to the proposed future-generation space-borne Big Bang Observer (BBO) mission which seeks for a stochastic background of primordial GWs in the frequency range ∼0.1−1\sim 0.1-1 Hz covered by a foreground of black-hole and neutron-star binaries. Our analysis is based on a simulation code which provides a dynamical model of a time-delay interferometer (TDI) network. It generates the data as time series and incorporates the analysis pipeline together with the noise projection. Our results confirm previous ad hoc predictions which say that BBO will be sensitive to backgrounds with fractional energy densities below Ω=10−16\Omega=10^{-16}Comment: 54 pages, 15 figure

    Sampling from a system-theoretic viewpoint: Part I - Concepts and tools

    Get PDF
    This paper is first in a series of papers studying a system-theoretic approach to the problem of reconstructing an analog signal from its samples. The idea, borrowed from earlier treatments in the control literature, is to address the problem as a hybrid model-matching problem in which performance is measured by system norms. In this paper we present the paradigm and revise underlying technical tools, such as the lifting technique and some topics of the operator theory. This material facilitates a systematic and unified treatment of a wide range of sampling and reconstruction problems, recovering many hitherto considered different solutions and leading to new results. Some of these applications are discussed in the second part

    Periodicity in wide-band time series

    Get PDF
    Summary: To test the hypotheses that (i) electroencephalograms (EEGs) are largely made up of oscillations at many frequencies and (ii) that the peaks in the power spectra represent oscillations, we applied a new method, called the Period Specific Average (PSA) to a wide sample of EEGs. Both hypotheses can be rejected

    Single channel nonstationary signal separation using linear time-varying filters

    Get PDF

    Introduction to Random Signals and Noise

    Get PDF
    Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals.\ud \ud Key features:\ud • Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains.\ud • Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver.\ud • Examines optimal filtering methods and their consequences.\ud • Presents a detailed discussion of the topic of Poisson processed and shot noise.\u
    • …
    corecore