1,385 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Northeastern Illinois University, Academic Catalog 2023-2024

    Get PDF
    https://neiudc.neiu.edu/catalogs/1064/thumbnail.jp

    Ensemble Machine Learning Model Generalizability and its Application to Indirect Tool Condition Monitoring

    Get PDF
    A practical, accurate, robust, and generalizable system for monitoring tool condition during a machining process would enable advancements in manufacturing process automation, cost reduction, and efficiency improvement. Previously proposed systems using various individual machine learning (ML) models and other analysis techniques have struggled with low generalizability to new machining and environmental conditions, as well as a common reliance on expensive or intrusive sensory equipment which hinders their industry adoption. While ensemble ML techniques offer significant advantages over individual models in terms of performance, overfitting reduction, and generalizability improvement, they have only begun to see limited applications within the field of tool condition monitoring (TCM). To address the research gaps which currently surround TCM system generalizability and optimal ensemble model configuration for this application, nine ML model types, including five heterogeneous and homogeneous ensemble models, are employed for tool wear classification. Sound, spindle power, and axial load signals are utilized through the sensor fusion of practical external and internal machine sensors. This original experimental process data is collected through tool wear experiments using a variety of machining conditions. Four feature selection methods and multiple tool wear classification resolution values are compared for this application, and the performance of the ML models is compared across metrics including k-fold cross validation and leave-one-group-out cross validation. The generalizability of the models to data from unseen experiments and machining conditions is evaluated, and a method of improving the generalizability levels using noisy training data is examined. T-tests are used to measure the significance of model performance differences. The extra-trees ensemble ML method, which had never before been applied to signal-based TCM, shows the best performance of the nine models.M.S

    Ti-6Al-4V β Phase Selective Dissolution: In Vitro Mechanism and Prediction

    Get PDF
    Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur and (3) near field electrochemical impedance spectra (nEIS) would distinguish between dissolved and polished Ti-6Al-4V, allowing for deep neural network prediction. First, we show a combinatorial effect of cathodic activation and inflammatory species, degrading the oxide film’s polarization resistance (Rp) by a factor of 105 Ωcm2 (p = 0.000) and inducing selective dissolution. Next, we establish a potential range (-0.3 V to –1 V) where inflammatory species, cathodic activation and increasing solution temperatures (24 oC to 55 oC) synergistically affect the oxide film. Then, we evaluate the effect of solution temperature on the dissolution rate, documenting a logarithmic dependence. In our second aim, we show decreased AM Ti-6Al-4V Rp when compared with AM Ti-29Nb-21Zr in H2O2. AM Ti-6Al-4V oxide degradation preceded pit nucleation in the β phase. Finally, in our third aim, we identified gaps in the application of artificial intelligence to metallic biomaterial corrosion. With an input of nEIS spectra, a deep neural network predicted the surface dissolution state with 96% accuracy. In total, these results support the inclusion of inflammatory species and cathodic activation in pre-clinical titanium devices and biomaterial testing
    corecore