119,737 research outputs found

    High Performance dynamic voltage/frequency scaling algorithm for real-time dynamic load management and code mobility

    Full text link
    Modern cyber-physical systems assume a complex and dynamic interaction between the real world and the computing system in real-time. In this context, changes in the physical environment trigger changes in the computational load to execute. On the other hand, task migration services offered by networked control systems require also management of dynamic real-time computing load in nodes. In such systems it would be difficult, if not impossible, to analyse off-line all the possible combinations of processor loads. For this reason, it is worthwhile attempting to define new flexible architectures that enable computing systems to adapt to potential changes in the environment. We assume a system composed by three main components: the first one is responsible of the management of the requests arisen when new tasks require to be executed. This management component asks to the second component about the resources available to accept the new tasks. The second component performs a feasibility analysis to determine if the new tasks can be accepted coping with its real-time constraints. A new processor speed is also computed. A third component monitors the execution of tasks applying a fixed priority scheduling policy and additionally controlling the frequency of the processor. This paper focus on the second component providing a "correct" (a task never is accepted if it is not schedulable) and "near-exact" (a task is rarely rejected if it is schedulable) algorithm that can be applicable in practice because its low/medium and predictable computational cost. The algorithm analyses task admission in terms of processor frequency scaling. The paper presents the details of a novel algorithm to analyse tasks admission and processor frequency assignment. Additionally, we perform several simulations to evaluate the comparative performance of the proposed approach. This evaluation is made in terms of energy consumption, task rejection ratios, and real computing costs. The results of simulations show that from the cost, execution predictability, and task acceptance points of view, the proposed algorithm mostly outperforms other constant voltage scaling algorithms. © 2011 Elsevier Inc. All rights reserved.This work has been supported by the Spanish Government as part of the SIDIRELI project (DPI2008-06737-C02-02), COBAMI project (DPI2011-28507-C02-02) and by the Generalitat Valenciana (Project ACOMP-2010-038).Coronel Parada, JO.; Simó Ten, JE. (2012). High Performance dynamic voltage/frequency scaling algorithm for real-time dynamic load management and code mobility. Journal of Systems and Software. 85(4):906-919. https://doi.org/10.1016/j.jss.2011.11.284S90691985

    Connecting with the Y Generation: an analysis of factors associated with the academic performance of foundation IS students

    Get PDF
    [Abstract]: A strategy to overcome challenges associated with teaching a foundation Information Systems (IS) course to large cohorts of Business students has been highly successful. To further refine the strategy, a survey was conducted to better understand attitudes and computer experience of the students. This study revealed that factors such as gender, age, study mode, type of secondary school attended, level of previous computing studies, perceived knowledge, frequency of use and attitudes towards using computers did not predict academic performance. Academic performance and characteristics of students belonging to the Y Generation were also compared with those of the Older Generation. Differences between these generations were found to exist in relation to perceived knowledge, level of previous computing studies, and experience of formal computing studies. It is imperative that educators be aware of the characteristics of the growing Y Generation students. This research has raised critical curriculum issues for the development of foundation IS pedagogy

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities
    corecore