344 research outputs found

    Truck Activity Pattern Classification Using Anonymous Mobile Sensor Data

    Get PDF
    To construct, operate, and maintain a transportation system that supports the efficient movement of freight, transportation agencies must understand economic drivers of freight flow. This is a challenge since freight movement data available to transportation agencies is typically void of commodity and industry information, factors that tie freight movements to underlying economic conditions. With recent advances in the resolution and availability of big data from Global Positioning Systems (GPS), it may be possible to fill this critical freight data gap. However, there is a need for methodological approaches to enable usage of this data for freight planning and operations. To address this methodological need, we use advanced machine-learning techniques and spatial analyses to classify trucks by industry based on activity patterns derived from large streams of truck GPS data. The major components are: (1) derivation of truck activity patterns from anonymous GPS traces, (2) development of a classification model to distinguish trucks by industry, and (3) estimation of a spatio-temporal regression model to capture rerouting behavior of trucks. First, we developed a K-means unsupervised clustering algorithm to find unique and representative daily activity patterns from GPS data. For a statewide GPS data sample, we are able to reduce over 300,000 daily patterns to a representative six patterns, thus enabling easier calibration and validation of the travel forecasting models that rely on detailed activity patterns. Next, we developed a Random Forest supervised machine learning model to classify truck daily activity patterns by industry served. The model predicts five distinct industry classes, i.e., farm products, manufacturing, chemicals, mining, and miscellaneous mixed, with 90% accuracy, filling a critical gap in our ability to tie truck movements to industry served. This ultimately allows us to build travel demand forecasting models with behavioral sensitivity. Finally, we developed a spatio-temporal model to capture truck rerouting behaviors due to weather events. The ability to model re-routing behaviors allows transportation agencies to identify operational and planning solutions that mitigate the impacts of weather on truck traffic. For freight industries, the prediction of weather impacts on truck driver’s route choices can inform a more accurate estimation of billable miles

    A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities

    Get PDF
    Transportation plays a key role in today’s economy. Hence, intelligent transportation systems have attracted a great deal of attention among research communities. There are a few review papers in this area. Most of them focus only on travel time prediction. Furthermore, these papers do not include recent research. To address these shortcomings, this study aims to examine the research on the arrival and travel time prediction on road-based on recently published articles. More specifically, this paper aims to (i) offer an extensive literature review of the field, provide a complete taxonomy of the existing methods, identify key challenges and limitations associated with the techniques; (ii) present various evaluation metrics, influence factors, exploited dataset as well as describe essential concepts based on a detailed analysis of the recent literature sources; (iii) provide significant information to researchers and transportation applications developer. As a result of a rigorous selection process and a comprehensive analysis, the findings provide a holistic picture of open issues and several important observations that can be considered as feasible opportunities for future research directions

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Developing an advanced collision risk model for autonomous vehicles

    Get PDF
    Aiming at improving road safety, car manufacturers and researchers are verging upon autonomous vehicles. In recent years, collision prediction methods of autonomous vehicles have begun incorporating contextual information such as information about the traffic environment and the relative motion of other traffic participants but still fail to anticipate traffic scenarios of high complexity. During the past two decades, the problem of real-time collision prediction has also been investigated by traffic engineers. In the traffic engineering approach, a collision occurrence can potentially be predicted in real-time based on available data on traffic dynamics such as the average speed and flow of vehicles on a road segment. This thesis attempts to integrate vehicle-level collision prediction approaches for autonomous vehicles with network-level collision prediction, as studied by traffic engineers. [Continues.

    Managing and Analyzing Big Traffic Data-An Uncertain Time Series Approach

    Get PDF

    Link Travel Time Estimation Based on Network Entry/Exit Time Stamps of Trips

    Get PDF
    This dissertation studies the travel time estimation at roadway link level using entry/exit time stamps of trips on a steady-state transportation network. We propose two inference methods based on the likelihood principle, assuming each link associates with a random travel time. The first method considers independent and Gaussian distributed link travel times, using the additive property that trip time has a closed-form distribution as the summation of link travel times. We particularly analyze the mean estimates when the variances of trip time estimates are known with a high degree of precision and examine the uniqueness of solutions. Two cases are discussed in detail: one with known paths of all trips and the other with unknown paths of some trips. We apply the Gaussian mixture model and the Expectation-Maximization (EM) algorithm to deal with the latter. The second method splits trip time proportionally among links traversed to deal with more general link travel time distributions such as log-normal. This approach builds upon an expected log-likelihood function which naturally leads to an iterative procedure analogous to the EM algorithm for solutions. Simulation tests on a simple nine-link network and on the Sioux Falls network respectively indicate that the two methods both perform well. The second method (i.e., trip splitting approximation) generally runs faster but with larger errors of estimated standard deviations of link travel times
    corecore