67 research outputs found

    From mathematics in logic to logic in mathematics : Boole and Frege

    Get PDF
    This project proceeds from the premise that the historical and logical value of Boole's logical calculus and its connection with Frege's logic remain to be recognised. It begins by discussing Gillies' application of Kuhn's concepts to the history oflogic and proposing the use of the concept of research programme as a methodological tool in the historiography oflogic. Then it analyses'the development of mathematical logic from Boole to Frege in terms of overlapping research programmes whilst discussing especially Boole's logical calculus. Two streams of development run through the project: 1. A discussion and appraisal of Boole's research programme in the context of logical debates and the emergence of symbolical algebra in Britain in the nineteenth century, including the improvements which Venn brings to logic as algebra, and the axiomatisation of 'Boolean algebras', which is due to Huntington and Sheffer. 2. An investigation of the particularity of the Fregean research programme, including an analysis ofthe extent to which certain elements of Begriffsschrift are new; and an account of Frege's discussion of Boole which focuses on the domain common to the two formal languages and shows the logical connection between Boole's logical calculus and Frege's. As a result, it is shown that the progress made in mathematical logic stemmed from two continuous and overlapping research programmes: Boole's introduction ofmathematics in logic and Frege's introduction oflogic in mathematics. In particular, Boole is regarded as the grandfather of metamathematics, and Lowenheim's theorem ofl915 is seen as a revival of his research programme

    Poincaré's philosophy of mathematics

    Get PDF
    The primary concern of this thesis is to investigate the explicit philosophy of mathematics in the work of Henri Poincare. In particular, I argue that there is a well-founded doctrine which grounds both Poincare's negative thesis, which is based on constructivist sentiments, and his positive thesis, via which he retains a classical conception of the mathematical continuum. The doctrine which does so is one which is founded on the Kantian theory of synthetic a priori intuition. I begin, therefore, by outlining Kant's theory of the synthetic a priori, especially as it applies to mathematics. Then, in the main body of the thesis, I explain how the various central aspects of Poincare's philosophy of mathematics - e.g. his theory of induction; his theory of the continuum; his views on impredicativiti his theory of meaning - must, in general, be seen as an adaptation of Kant's position. My conclusion is that not only is there a well-founded philosophical core to Poincare's philosophy, but also that such a core provides a viable alternative in contemporary debates in the philosophy of mathematics. That is, Poincare's theory, which is secured by his doctrine of a priori intuitions, and which describes a position in between the two extremes of an "anti-realist" strict constructivism and a "realist" axiomatic set theory, may indeed be true

    Fondements et épistémologie de l'arithmétique dans les Grundlagen de Frege

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Second-order logic is logic

    Get PDF
    "Second-order logic" is the name given to a formal system. Some claim that the formal system is a logical system. Others claim that it is a mathematical system. In the thesis, I examine these claims in the light of some philosophical criteria which first motivated Frege in his logicist project. The criteria are that a logic should be universal, it should reflect our intuitive notion of logical validity, and it should be analytic. The analysis is interesting in two respects. One is conceptual: it gives us a purchase on where and how to draw a distinction between logic and other sciences. The other interest is historical: showing that second-order logic is a logical system according to the philosophical criteria mentioned above goes some way towards vindicating Frege's logicist project in a contemporary context

    Categoricity

    Get PDF
    After a short preface, the first of the three sections of this paper is devoted to historical and philosophic aspects of categoricity. The second section is a self-contained exposition, including detailed definitions, of a proof that every mathematical system whose domain is the closure of its set of distinguished individuals under its distinguished functions is categorically characterized by its induction principle together with its true atoms (atomic sentences and negations of atomic sentences). The third section deals with applications especially those involving the distinction between characterizing a system and axiomatizing the truths of a syste

    Traditional logic and the early history of sets, 1854–1908

    Get PDF
    Ministerio de Educación y Ciencia (España

    The epistemology of abstractionism

    Get PDF
    I examine the nature and the structure of basic logico-mathematical knowledge. What justifies the truth of the Dedekind-Peano axioms and the validity of Modus Ponens? And is the justification we possess reflectively available? To make progress with these questions, I ultimately embed Hale's and Wright's neo-Fregeanism in a general internalistic epistemological framework. In Part I, I provide an introduction to the problems in the philosophy of mathematics to motivate the investigations to follow. I present desiderata for a fully satisfactory epistemology of mathematics and discuss relevant positions. All these positions turn out to be unsatisfactory, which motivates the abstractionist approach. I argue that abstractionism is in need of further explication when it comes to its central epistemological workings. I fill this gap by embedding neo-Fregeanism in an internalistic epistemological framework. In Part 11, I motivate, outline, and discuss the consequences of the frame- work. I argue: (1) we need an internalistic notion of warrant in our epistemology and every good epistemology accounts for the possession of such warrant; (2) to avoid scepticism, we need to invoke a notion of non-evidential warrant (entitlement); (3) because entitlements cannot be upgraded, endorsing entitlements for mathematical axioms and validity claims would entail that such propositions cannot be claimed to be known. Because of (3), the framework appears to yield sceptical consequences. In Part 111, I discuss (i) whether we can accept these consequences and (ii) whether we have to accept these consequences. As to (i), I argue that there is a tenable solely entitlement- based philosophy of mathematics and logic. However, I also argue that we can over- come limitations by vindicating the neo-Fregean proposal that implicit definitions can underwrite basic logico-mathematical knowledge. One key manoeuvre here is to acknowledge that the semantic success of creative implicit definitions rests on substantial presuppositions - but to argue that relevant presuppositions are entitlements

    Foundation of Mathematics between Theory and Practice

    Get PDF
    In this article I propose to look at set theory not only as a founda­tion of mathematics in a traditional sense, but as a foundation for mathemat­ical practice. For this purpose I distinguish between a standard, ontological, set theoretical foundation that aims to find a set theoretical surrogate to every mathematical object, and a practical one that tries to explain mathematical phenomena, giving necessary and sufficient conditions for the proof of mathematical propositions. I will present some example of this use of set theoretical methods, in the context of mainstream mathematics, in terms of independence proofs, equiconsistency results and discussing some recent results that show how it is possible to “complete” the structures H(ℵ1) and H(ℵ2). Then I will argue that a set theoretical foundation of mathematics can be relevant also for the philosophy of mathematical practice, as long as some axioms of set theory can be seen as explanations of mathematical phenomena. In the end I will propose a more general distinction between two different kinds of foundation: a practical one and a theoretical one, drawing some examples from the history of the foundation of mathematics.Je me propose dans cet article de traiter de la théorie des ensembles, non seulement comme fondement des mathématiques au sens traditionnel, mais aussi comme fondement de la pratique mathématique. De ce point de vue, je marque une distinction entre un fondement ensembliste standard, d'une nature ontologique, grâce auquel tout objet mathématique peut trouver un succédané ensembliste, et un fondement pratique, qui vise à expliquer les phénomènes mathématiques, en donnant des conditions nécessaires et suffisantes pour prouver les propositions mathématiques. Je présente quelques exemples de cette utilisation des méthodes ensemblistes, dans le contexte des principales théories mathématiques, en termes de preuves d'indépendance et de résultats d'équiconsistance, et je discute quelques résultats récents qui montrent comment il est possible de « compléter » les structures H(ℵ1) et H(ℵ2). Ensuite, je montre que les fondements ensemblistes de mathématiques peuvent être utiles aussi pour la philosophie de la pratique mathématique, car certains axiomes de la théorie des ensembles peuvent être considérés comme des explications de phénomènes mathématiques. Dans la dernière partie de mon article, je propose une distinction plus générale entre deux différentes espèces de fondement : pratique et théorique, en tirant quelques exemples de l'histoire des fondements des mathématiques

    Implications of Foundational Crisis in Mathematics: A Case Study in Interdisciplinary Legal Research

    Get PDF
    As a result of a sequence of so-called foundational crises, mathematicians have come to realize that foundational inquiries are difficult and perhaps never ending. Accounts of the last of these crises have appeared with increasing frequency in the legal literature, and one piece of this Article examines these invocations with a critical eye. The other piece introduces a framework for thinking about law as a discipline. On the one hand, the disciplinary framework helps explain how esoteric mathematical topics made their way into the legal literature. On the other hand, the mathematics can be used to examine some aspects of interdisciplinary legal research
    corecore