167 research outputs found

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio

    A virtual reality system using the concentric mosaic: Construction, rendering, and data compression

    Get PDF
    This paper proposes a new image-based rendering (IBR) technique called "concentric mosaic" for virtual reality applications. IBR using the plenoptic function is an efficient technique for rendering new views of a scene from a collection of sample images previously captured. It provides much better image quality and lower computational requirement for rendering than conventional three-dimensional (3-D) model-building approaches. The concentric mosaic is a 3-D plenoptic function with viewpoints constrained on a plane. Compared with other more sophisticated four-dimensional plenoptic functions such as the light field and the lumigraph, the file size of a concentric mosaic is much smaller. In contrast to a panorama, the concentric mosaic allows users to move freely in a circular region and observe significant parallax and lighting changes without recovering the geometric and photometric scene models. The rendering of concentric mosaics is very efficient, and involves the reordering and interpolating of previously captured slit images in the concentric mosaic. It typically consists of hundreds of high-resolution images which consume a significant amount of storage and bandwidth for transmission. An MPEG-like compression algorithm is therefore proposed in this paper taking into account the access patterns and redundancy of the mosaic images. The compression algorithms of two equivalent representations of the concentric mosaic, namely the multiperspective panoramas and the normal setup sequence, are investigated. A multiresolution representation of concentric mosaics using a nonlinear filter bank is also proposed.published_or_final_versio

    Free Viewpoint Video Based on Stitching Technique

    Get PDF
    Image stitching is a technique used for creating one panoramic scene from multiple images. It is used in panoramic photography and video where the viewer can only scroll horizontally and vertically across the scene. However, stitching has not been used for creating free-viewpoint videos (FVV) where viewers can change their viewing points freely and smoothly while playing the video. current research, implemented FVV playing system using image stitching, this system allows users to enjoy the capability of moving their viewpoint freely and smoothly. To develop this system, user should capture MVV from different viewpoints and with appropriate region area for each pair of cameras then the system stitch the overlapped video to create stitched video/videos to display it in FVV playing system with applying freely and smoothly switching and interpolation of viewpoints over video playback. Current research evaluated the performance of video playing system based on system idea, system accuracy, smoothness, and user satisfaction. The results of evaluation have been very positive in most aspects

    Viewpoint-Free Photography for Virtual Reality

    Get PDF
    Viewpoint-free photography, i.e., interactively controlling the viewpoint of a photograph after capture, is a standing challenge. In this thesis, we investigate algorithms to enable viewpoint-free photography for virtual reality (VR) from casual capture, i.e., from footage easily captured with consumer cameras. We build on an extensive body of work in image-based rendering (IBR). Given images of an object or scene, IBR methods aim to predict the appearance of an image taken from a novel perspective. Most IBR methods focus on full or near-interpolation, where the output viewpoints either lie directly between captured images, or nearby. These methods are not suitable for VR, where the user has significant range of motion and can look in all directions. Thus, it is essential to create viewpoint-free photos with a wide field-of-view and sufficient positional freedom to cover the range of motion a user might experience in VR. We focus on two VR experiences: 1) Seated VR experiences, where the user can lean in different directions. This simplifies the problem, as the scene is only observed from a small range of viewpoints. Thus, we focus on easy capture, showing how to turn panorama-style capture into 3D photos, a simple representation for viewpoint-free photos, and also how to speed up processing so users can see the final result on-site. 2) Room-scale VR experiences, where the user can explore vastly different perspectives. This is challenging: More input footage is needed, maintaining real-time display rates becomes difficult, view-dependent appearance and object backsides need to be modelled, all while preventing noticeable mistakes. We address these challenges by: (1) creating refined geometry for each input photograph, (2) using a fast tiled rendering algorithm to achieve real-time display rates, and (3) using a convolutional neural network to hide visual mistakes during compositing. Overall, we provide evidence that viewpoint-free photography is feasible from casual capture. We thoroughly compare with the state-of-the-art, showing that our methods achieve both a numerical improvement and a clear increase in visual quality for both seated and room-scale VR experiences

    Cubic-panorama image dataset analysis for storage and transmission

    Full text link

    3D panoramic imaging for virtual environment construction

    Get PDF
    The project is concerned with the development of algorithms for the creation of photo-realistic 3D virtual environments, overcoming problems in mosaicing, colour and lighting changes, correspondence search speed and correspondence errors due to lack of surface texture. A number of related new algorithms have been investigated for image stitching, content based colour correction and efficient 3D surface reconstruction. All of the investigations were undertaken by using multiple views from normal digital cameras, web cameras and a ”one-shot” panoramic system. In the process of 3D reconstruction a new interest points based mosaicing method, a new interest points based colour correction method, a new hybrid feature and area based correspondence constraint and a new structured light based 3D reconstruction method have been investigated. The major contributions and results can be summarised as follows: • A new interest point based image stitching method has been proposed and investigated. The robustness of interest points has been tested and evaluated. Interest points have been proved robust to changes in lighting, viewpoint, rotation and scale. • A new interest point based method for colour correction has been proposed and investigated. The results of linear and linear plus affine colour transforms have proved more accurate than traditional diagonal transforms in accurately matching colours in panoramic images. • A new structured light based method for correspondence point based 3D reconstruction has been proposed and investigated. The method has been proved to increase the accuracy of the correspondence search for areas with low texture. Correspondence speed has also been increased with a new hybrid feature and area based correspondence search constraint. • Based on the investigation, a software framework has been developed for image based 3D virtual environment construction. The GUI includes abilities for importing images, colour correction, mosaicing, 3D surface reconstruction, texture recovery and visualisation. • 11 research papers have been published.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Plenoptische Modellierung und Darstellung komplexer starrer Szenen

    Get PDF
    Image-Based Rendering is the task of generating novel views from existing images. In this thesis different new methods to solve this problem are presented. These methods are designed to fulfil special goals such as scalability and interactive rendering performance. First, the theory of the Plenoptic Function is introduced as the mathematical foundation of image formation. Then a new taxonomy is introduced to categorise existing methods and an extensive overview of known approaches is given. This is followed by a detailed analysis of the design goals and the requirements with regards to input data. It is concluded that for perspectively correct image generation from sparse spatial sampling geometry information about the scene is necessary. This leads to the design of three different Image-Based Rendering methods. The rendering results are analysed on different data sets. For this analysis, error metrics are defined to evaluate different aspects

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    corecore