1,071 research outputs found

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Restricted Mobility Improves Delay-Throughput Trade-offs in Mobile Ad-Hoc Networks

    Get PDF
    In this paper we revisit two classes of mobility models which are widely used to repre-sent users ’ mobility in wireless networks: Random Waypoint (RWP) and Random Direction (RD). For both models we obtain systems of partial differential equations which describe the evolution of the users ’ distribution. For the RD model, we show how the equations can be solved analytically both in the stationary and transient regime adopting standard mathematical techniques. Our main contributions are i) simple expressions which relate the transient dura-tion to the model parameters; ii) the definition of a generalized random direction model whose stationary distribution of mobiles in the physical space corresponds to an assigned distribution

    Design and capacity performance analysis of wireless mesh network

    Get PDF
    Proceedings of: 5th International Conference on Mobile Technology, Applications, and Systems (Mobility 2008), (September 10-12, 2008), Yilan (Taiwan)From the network operator’s point of view, the high CAPEX/OPEX cost resulting from fixed/wired backhaul links can be inhibitive to successful deployment of broadband wireless services. The emerging wireless mesh network (WMN) technology is seen as one of the potential solutions which may reduce wired backhaul dependency through multihop transmission. Despite the advantages, many remain sceptical on WMN’s network capacity and scalability performances particularly when the user density is high. This paper provides an insight on the best possible upper-bound capacity performance of WMN, taking into consideration three key design parameters namely 1) Percentage of wired backhaul points per network, 2) Mesh-to-Access Link-Rate Ratio (R) and 3) Number of radio interfaces per mesh node including hybrid radio options. These design options are compared and contrasted with different deployment densities. The results generally show that the higher the number of backhaul points, the higher the effective access capacity available to mesh node and hence user domain. Increasing the R and the number of radio per mesh node are two alternative means to push up the effective access capacity per mesh node without increasing the number of wired backhaul points. This is most significant in multi radio system where about 80% of the backhaul points can be eliminated with R= 3 in order to maintain effective access capacity close to full rate (Capacity, C=1) per mesh node. It is also found that 50% of the backhaul points can be eliminated with R=2 for all radio options (except for the pure single radio case).European Community's Seventh Framework ProgramThis work was partially funded by the European Commission within the 7th Framework Program in the context of the ICT project CARMEN (Grant Agreement No. 214994) http://www.ict-carmen.eu

    An Interconnection Architecture for Seamless Inter and Intra-Chip Communication Using Wireless Links

    Get PDF
    As semiconductor technologies continues to scale, more and more cores are being integrated on the same multicore chip. This increase in complexity poses the challenge of efficient data transfer between these cores. Several on-chip network architectures are proposed to improve the design flexibility and communication efficiency of such multicore chips. However, in a larger system consisting of several multicore chips across a board or in a System-in-Package (SiP), the performance is limited by the communication among and within these chips. Such systems, most commonly found within computing modules in typical data center nodes or server racks, are in dire need of an efficient interconnection architecture. Conventional interchip communication using wireline links involve routing the data from the internal cores to the peripheral I/O ports, travelling over the interchip channels to the destination chip, and finally getting routed from the I/O to the internal cores there. This multihop communication increases latency and energy consumption while decreasing data bandwidth in a multichip system. Furthermore, the intrachip and interchip communication architectures are separately designed to maximize design flexibility. Jointly designing them could, however, improve the communication efficiency significantly and yield better solutions. Previous attempts at this include an all-photonic approach that provides a unified inter/intra-chip optical network, based on recent progress in nano-photonic technologies. Works on wireless inter-chip interconnects successfully yielded better results than their wired counterparts, but their scopes were limited to establishing a single wireless connection between two chips rather than a communication architecture for a system as a whole. In this thesis, the design of a seamless hybrid wired and wireless interconnection network for multichip systems in a package is proposed. The design utilizes on-chip wireless transceivers with dimensions spanning up to tens of centimeters. It manages to seamlessly bind both intrachip and interchip communication architectures and enables direct chip-to-chip communication between the internal cores. It is shown through cycle accurate simulations that the proposed design increases the bandwidth and reduces the energy consumption when compared to the state-of-the-art wireline I/O based multichip communications

    Cognitive Networks Achieve Throughput Scaling of a Homogeneous Network

    Full text link
    We study two distinct, but overlapping, networks that operate at the same time, space, and frequency. The first network consists of nn randomly distributed \emph{primary users}, which form either an ad hoc network, or an infrastructure-supported ad hoc network with ll additional base stations. The second network consists of mm randomly distributed, ad hoc secondary users or cognitive users. The primary users have priority access to the spectrum and do not need to change their communication protocol in the presence of secondary users. The secondary users, however, need to adjust their protocol based on knowledge about the locations of the primary nodes to bring little loss to the primary network's throughput. By introducing preservation regions around primary receivers and avoidance regions around primary base stations, we propose two modified multihop routing protocols for the cognitive users. Base on percolation theory, we show that when the secondary network is denser than the primary network, both networks can simultaneously achieve the same throughput scaling law as a stand-alone network. Furthermore, the primary network throughput is subject to only a vanishingly fractional loss. Specifically, for the ad hoc and the infrastructure-supported primary models, the primary network achieves sum throughputs of order n1/2n^{1/2} and max⁡{n1/2,l}\max\{n^{1/2},l\}, respectively. For both primary network models, for any δ>0\delta>0, the secondary network can achieve sum throughput of order m1/2−δm^{1/2-\delta} with an arbitrarily small fraction of outage. Thus, almost all secondary source-destination pairs can communicate at a rate of order m−1/2−δm^{-1/2-\delta}.Comment: 28 pages, 12 figures, submitted to IEEE Trans. on Information Theor

    Reliable Data Forwarding in Wireless Sensor Networks: Delay and Energy Trade Off

    Get PDF
    eliable Data Forwarding in Wireless Sensor Networks: Delay and Energy Trade Of
    • …
    corecore