40,014 research outputs found

    The Virtual Commons: Why Free-Riding Can Be Tolerated in File Sharing Networks

    Get PDF
    Peer-to-peer networks have emerged as a popular alternative to traditional client-server architectures for the distribution of information goods. Recent academic studies have observed high levels of free-riding in various peer-to-peer networks, leading some to suggest the imminent collapse of these communities as a viable information sharing mechanism. Our research develops an analytic model to analyze the behavior of P2P networks in the presence of free-riding. In contrast to previous predictions we find that P2P networks can operate effectively in the presence of significant free-riding. In future work we plan to explore how much peer- to-peer network performance could be improved if free-riding were eliminated and discuss both the costs and benefits of managerial mechanisms to limit free-riding

    Free riding in peer-to-peer networks

    Get PDF
    Free riding in peer-to-peer (P2P) networks poses a serious threat to their proper operation. Here, the authors present a variety of approaches developed to overcome this problem. They introduce several unique aspects of P2P networks and discuss free riding's effects on P2P services. They categorize proposed solutions and describe each category's important features and implementation issues together with some sample solutions. They also discuss open issues, including common attacks and security considerations. © 2009 IEEE

    On the Applicability of Resources Optimization Model for Mitigating Free Riding in P2P System

    Get PDF
    The survival of peer-to-peer systems depends on the contribution of resources by all the participating peers. Selfish behavior of some peers that do not contribute resources inhibits the expected level of service delivery. Free riding has been found to seriously affect the performance and negates the sharing principle of peer-to-peer networks. In this paper, first, we investigate through simulations the effectiveness of a proposed linear model for mitigating free riding in a P2P system. Second, we extended the initial linear model by incorporating additional constraints on download and upload of each peer. This helps in reducing the effects of free riding behavior on the system. Lastly, we evaluate the impacts of some parameters on the models.Keywords: Peer-to-Peer, Resources, Free rider, Optimization, Constraints, Algorith

    Mitigating Free Riding in Peer-To-Peer Networks: Game Theory Approach

    Get PDF
    The performance of peer-to-peer systems is based on the quality and quantity of resource contributions from participating peers. In most systems, users are assumed to be cooperative, but in reality, sharing in peer-to-peer systems is faced with the problem of free riding. In this paper, we model the interactions between peers as a modified gift giving game and proposed an utility exchange incentive mechanism to inhibit free riding. This technique allows peers to either upload or download resources based on their best strategy and interest. Through extensive simulations, we show that this mechanism can increase fairness and encourage resource contribution by peers to the network. This will ensure a resourceful and stable peer- to-peer systems.http://dx.doi.org/10.4314/njt.v34i2.2

    Counteracting free riding in pure peer-to-peer networks

    Get PDF
    Ankara : The Department of Computer Engineering and The Institute of Engineering and Science of Bilkent University, 2008.Thesis (Ph.D.) -- Bilkent University, 2008.Includes bibliographical references leaves 119-127.The peer-to-peer (P2P) network paradigm has attracted a significant amount of interest as a popular and successful alternative to traditional client-server model for resource sharing and content distribution. However, researchers have observed the existence of high degrees of free riding in P2P networks which poses a serious threat to effectiveness and efficient operation of these networks, and hence to their future. Therefore, eliminating or reducing the impact of free riding on P2P networks has become an important issue to investigate and a considerable amount of research has been conducted on it. In this thesis, we propose two novel solutions to reduce the adverse effects of free riding on P2P networks and to motivate peers to contribute to P2P networks. These solutions are also intended to lead to performance gains for contributing peers and to penalize free riders. As the first solution, we propose a distributed and localized scheme, called Detect and Punish Method (DPM), which depends on detection and punishment of free riders. Our second solution to the free riding problem is a connection-time protocol, called P2P Connection Management Protocol (PCMP), which is based on controlling and managing link establishments among peers according to their contributions. To evaluate the proposed solutions and compare them with other alternatives, we developed a new P2P network simulator and conducted extensive simulation experiments. Our simulation results show that employing our solutions in a P2P network considerably reduces the adverse effects of free riding and improves the overall performance of the network. Furthermore, we observed that P2P networks utilizing the proposed solutions become more robust and scalable.Karakaya, K MuratPh.D

    Predicting the Impact of Measures Against P2P Networks on the Transient Behaviors

    Get PDF
    The paper has two objectives. The first is to study rigorously the transient behavior of some P2P networks whenever information is replicated and disseminated according to epidemic-like dynamics. The second is to use the insight gained from the previous analysis in order to predict how efficient are measures taken against peer-to-peer (P2P) networks. We first introduce a stochastic model which extends a classical epidemic model and characterize the P2P swarm behavior in presence of free riding peers. We then study a second model in which a peer initiates a contact with another peer chosen randomly. In both cases the network is shown to exhibit a phase transition: a small change in the parameters causes a large change in the behavior of the network. We show, in particular, how the phase transition affects measures that content provider networks may take against P2P networks that distribute non-authorized music or books, and what is the efficiency of counter-measures.Comment: IEEE Infocom (2011

    A connection management protocol for promoting cooperation in Peer-to-Peer networks

    Get PDF
    Cataloged from PDF version of article.The existence of a high degree of free riding in Peer-to-Peer (P2P) networks is an important threat that should be addressed while designing P2P protocols. In this paper we propose a connection-based solution that will help to reduce the free riding effects on a P2P network and discourage free riding. Our solution includes a novel P2P connection type and an adaptive connection management protocol that dynamically establishes and adapts a P2P network topology considering the contributions of peers. The aim of the protocol is to bring contributing peers closer to each other on the adapted topology and to push the free riders away from the contributors. In this way contribution is promoted and free riding is discouraged. Unlike some other proposals against free riding, our solution does not require any permanent identification of peers or a security infrastructure for maintaining a global reputation system. It is shown through simulation experiments that there is a significant improvement in performance for contributing peers in a network that applies our protocol. © 2007 Elsevier B.V. All rights reserved

    A Empirically Validated Framework for Limiting Free-Riding in P2P Networks through the Use of Social Network Information

    Get PDF
    In order to overcome the problem of free-riding in current P2P system, we suggest applying social network theory. Based on our exploration of the overlapping research fields of social networks and peer-to-peer networks, we propose a new P2P framework within this paper. It specifies social network information that can be used in a P2P system to avoid performance inefficiencies caused by free-riding or by policies to overcome free-riding. To identify this specific social network information, we conduct a survey among a small group of students, who use Skype, a popular P2P system. We use descriptive analysis and multiple regression analysis to analyze the survey data. The results of the analyses provide an indication that the idea of using social network information in P2P systems is valid and that it is supported by P2P users. Based on our findings, we make recommendations for a successful implementation of social-network-information-based P2P systems that can overcome free-riding issues and, consequently, improve the performance of P2P systems
    corecore