190 research outputs found

    Free cooling and high-energy tails of granular gases with variable restitution coefficient

    Get PDF
    We prove the so-called generalized Haff's law yielding the optimal algebraic cooling rate of the temperature of a granular gas described by the homogeneous Boltzmann equation for inelastic interactions with non constant restitution coefficient. Our analysis is carried through a careful study of the infinite system of moments of the solution to the Boltzmann equation for granular gases and precise Lp estimates in the selfsimilar variables. In the process, we generalize several results on the Boltzmann collision operator obtained recently for homogeneous granular gases with constant restitution coefficient to a broader class of physical restitution coefficients that depend on the collision impact velocity. This generalization leads to the so-called L1-exponential tails theorem. for this model

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure

    Blow up Analysis for Anomalous Granular Gases

    Full text link
    We investigate in this article the long-time behaviour of the solutions to the energy-dependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. We study existence and uniqueness of blow up profiles for this model, together with the trend to equilibrium and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we investigate the asymptotic behaviour of the inelastic Boltzmann equation with and without drift term by introducing new strongly "nonlinear" self-similar variables.Comment: 20

    Hydrodynamics of inelastic Maxwell models

    Full text link
    An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier--Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman--Enskog method to inelastic gases. Second, the non-Newtonian rheological properties in the uniform shear flow (USF) are obtained in the steady state as well as in the transient unsteady regime. Next, an exact solution for a special class of Couette flows characterized by a uniform heat flux is worked out. This solution shares the same rheological properties as the USF and, additionally, two generalized transport coefficients associated with the heat flux vector can be identified. Finally, the problem of small spatial perturbations of the USF is analyzed with a Chapman--Enskog-like method and generalized (tensorial) transport coefficients are obtained.Comment: 40 pages, 10 figures; v2: final version published in a special issue devoted to "Granular hydrodynamics

    Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems

    Full text link
    Analytic solutions F(v,t)F(v,t) of the nonlinear Boltzmann equation in dd-dimensions are studied for a new class of dissipative models, called inelastic repulsive scatterers, interacting through pseudo-power law repulsions, characterized by a strength parameter ν\nu, and embedding inelastic hard spheres (ν=1\nu=1) and inelastic Maxwell models (ν=0\nu=0). The systems are either freely cooling without energy input or driven by thermostats, e.g. white noise, and approach stable nonequilibrium steady states, or marginally stable homogeneous cooling states, where the data, v0d(t)F(v,t)v^d_0(t) F(v,t) plotted versus c=v/v0(t)c=v/v_0(t), collapse on a scaling or similarity solution f(c)f(c), where v0(t)v_0(t) is the r.m.s. velocity. The dissipative interactions generate overpopulated high energy tails, described generically by stretched Gaussians, f(c)exp[βcb]f(c) \sim \exp[-\beta c^b] with 0<b<20 < b < 2, where b=νb=\nu with ν>0\nu>0 in free cooling, and b=1+1/2νb=1+{1/2} \nu with ν0\nu \geq 0 when driven by white noise. Power law tails, f(c)1/ca+df(c) \sim 1/c^{a+d}, are only found in marginal cases, where the exponent aa is the root of a transcendental equation. The stability threshold depend on the type of thermostat, and is for the case of free cooling located at ν=0\nu=0. Moreover we analyze an inelastic BGK-type kinetic equation with an energy dependent collision frequency coupled to a thermostat, that captures all qualitative properties of the velocity distribution function in Maxwell models, as predicted by the full nonlinear Boltzmann equation, but fails for harder interactions with ν>0\nu>0.Comment: Submitted to: "Granular Gas Dynamics", T. Poeschel, N. Brilliantov (eds.), Lecture Notes in Physics, Vol. LNP 624, Springer-Verlag, Berlin-Heidelberg-New York, 200

    Velocity fluctuations in a one dimensional Inelastic Maxwell model

    Full text link
    We consider the velocity fluctuations of a system of particles described by the Inelastic Maxwell Model. The present work extends the methods, previously employed to obtain the one-particle velocity distribution function, to the study of the two particle correlations. Results regarding both the homogeneous cooling process and the steady state driven regime are presented. In particular we obtain the form of the pair correlation function in the scaling region of the homogeneous cooling process and show that some of its moments diverge. This fact has repercussions on the behavior of the energy fluctuations of the model.Comment: 16 pages, 1 figure, to be published on Journal of Statistical Mechanics: Theory and Experiment

    Which is the temperature of granular systems? A mean field model of free cooling inelastic mixtures

    Full text link
    We consider a mean field model describing the free cooling process of a two component granular mixture, a generalization of so called Maxwell model. The cooling is viewed as an ordering process and the scaling behavior is attributed to the presence of an attractive fixed point at v=0v=0 for the dynamics. By means of asymptotic analysis of the Boltzmann equation and of numerical simulations we get the following results: 1)we establish the existence of two different partial granular temperatures, one for each component, which violates the Zeroth Law of Thermodynamics; 2) we obtain the scaling form of the two distribution functions; 3) we prove the existence of a continuous spectrum of exponents characterizing the inverse-power law decay of the tails of the velocity, which generalizes the previously reported value 4 for the pure model; 4) we find that the exponents depend on the composition, masses and restitution coefficients of the mixture; 5) we also remark that the reported distributions represent a dynamical realization of those predicted by the Non Extensive Statistical Mechanics, in spite of the fact that ours stem from a purely dynamical approach.Comment: 23 pages, 9 figures. submitted for publicatio

    What is the temperature of a granular medium?

    Full text link
    In this paper we discuss whether thermodynamical concepts and in particular the notion of temperature could be relevant for the dynamics of granular systems. We briefly review how a temperature-like quantity can be defined and measured in granular media in very different regimes, namely the glassy-like, the liquid-like and the granular gas. The common denominator will be given by the Fluctuation-Dissipation Theorem, whose validity is explored by means of both numerical and experimental techniques. It turns out that, although a definition of a temperature is possible in all cases, its interpretation is far from being obvious. We discuss the possible perspectives both from the theoretical and, more importantly, from the experimental point of view

    Driven granular gases with gravity

    Full text link
    We study fluidized granular gases in a stationary state determined by the balance between an external driving and the bulk dissipation. The two considered situations are inspired by recent experiments, where the gravity plays a major role as a driving mechanism: in the first case gravity acts only in one direction and the bottom wall is vibrated, in the second case gravity acts in both directions and no vibrating walls are present. Simulations performed under the molecular chaos assumption show averaged profiles of density, velocity and granular temperature which are in good agreement with the experiments. Moreover we measure the velocity distributions which show strong non-Gaussian behavior, as experiments pointed out, but also density correlations accounting for clustering, at odds with the experimental results. The hydrodynamics of the first model is discussed and an exact solution is found for the density and granular temperature as functions of the distance from the vibrating wall. The limitations of such a solution, in particular in a broad layer near the wall injecting energy, are discussed.Comment: Revised version accepted for publication. New results added and discussions considering tangential forces. 27 pages (19 figures included), to appear in Phys.Rev.
    corecore