1,013 research outputs found

    The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis

    Get PDF
    The tomato (Solanum lycopersicum) sulfurea mutation displays trans-inactivation of wild-type alleles in heterozygous plants, a phenomenon referred to as paramutation. Homozygous mutant plants and paramutated leaf tissue of heterozygous plants show a pigment-deficient phenotype. The molecular basis of this phenotype and the function of the SULFUREA gene (SULF) are unknown. Here, a comprehensive physiological analysis of the sulfurea mutant is reported which suggests a molecular function for the SULFUREA locus. It is found that the sulf mutant is auxin-deficient and that the pigment-deficient phenotype is likely to represent only a secondary consequence of the auxin deficiency. This is most strongly supported by the isolation of a suppressor mutant which shows an auxin overaccumulation phenotype and contains elevated levels of indole-3-acetic acid (IAA). Several lines of evidence point to a role of the SULF gene in tryptophan-independent auxin biosynthesis, a pathway whose biochemistry and enzymology is still completely unknown. Thus, the sulfurea mutant may provide a promising entry point into elucidating the tryptophan-independent pathway of IAA synthesis

    A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis

    Full text link
    Rhizobia fix nitrogen within root nodules of host plants where nitrogenase expression is strictly controlled by its key regulator NifA. We recently discovered that in nodules infected by the beta-rhizobial strain Paraburkholderia phymatum STM815, NifA controls expression of two bacterial auxin synthesis genes. Both the iaaM and iaaH transcripts, as well as the metabolites indole-acetamide (IAM) and indole-3-acetic acid (IAA) showed increased abundance in nodules occupied by a nifA mutant compared to wild-type nodules. Here, we document the structural changes that a P. phymatum nifA mutant induces in common bean (Phaseolus vulgaris) nodules, eventually leading to hypernodulation. To investigate the role of the P. phymatum iaaMH genes during symbiosis, we monitored their expression in presence and absence of NifA over different stages of the symbiosis. The iaaMH genes were found to be under negative control of NifA in all symbiotic stages. While a P. phymatum iaaMH mutant produced the same number of nodules and nitrogenase activity as the wild-type strain, the nifA mutant produced more nodules than the wild-type that clustered into regularly-patterned root zones. Mutation of the iaaMH genes in a nifA mutant background reduced the presence of these nodule clusters on the root. We further show that the P. phymatum iaaMH genes are located in a region of the symbiotic plasmid with a significantly lower GC content and exhibit high similarity to two genes of the IAM pathway often used by bacterial phytopathogens to deploy IAA as a virulence factor. Overall, our data suggest that the increased abundance of rhizobial auxin in the non-fixing nifA mutant strain enables greater root infection rates and a role for bacterial auxin production in the control of early stage symbiotic interactions

    Soil Bacteria Support and Protect Plants Against Abiotic Stresses

    Get PDF
    corecore