171,122 research outputs found

    Resistive and magnetized accretion flows with convection

    Full text link
    We considered the effects of convection on the radiatively inefficient accretion flows (RIAF) in the presence of resistivity and toroidal magnetic field. We discussed the effects of convection on transports of angular momentum and energy. We established two cases for the resistive and magnetized RIAFs with convection: assuming the convection parameter as a free parameter and using mixing-length theory to calculate convection parameter. A self-similar method was used to solve the integrated equations that govern the behavior of the presented model. The solutions showed that the accretion and rotational velocities decrease by adding the convection parameter, while the sound speed increases. Moreover, by using mixing-length theory to calculate convection parameter, we found that the convection can be important in RIAFs with magnetic field and resistivity.Comment: 7 pages, 3 figures, accepted by Ap&S

    Chaotic diffusion of particles with finite mass in oscillating convection flows

    Full text link
    Deterministic diffusion in temporally oscillating convection is studied for particles with finite mass. The particles are assumed to obey a simple dissipative dynamical system and the particle diffusion is induced by the strange attractor. The diffusion constants are numerically calculated for convection models with free and rigid boundary conditions.Comment: 5 figure

    A test of time-dependent theories of stellar convection

    Full text link
    Context: In Cepheids close to the red edge of the classical instability strip, a coupling occurs between the acoustic oscillations and the convective motions close to the surface.The best topical models that account for this coupling rely on 1-D time-dependent convection (TDC) formulations. However, their intrinsic weakness comes from the large number of unconstrained free parameters entering in the description of turbulent convection. Aims: We compare two widely used TDC models with the first two-dimensional nonlinear direct numerical simulations (DNS) of the convection-pulsation coupling in which the acoustic oscillations are self-sustained by the kappa-mechanism. Methods: The free parameters appearing in the Stellingwerf and Kuhfuss TDC recipes are constrained using a chi2-test with the time-dependent convective flux that evolves in nonlinear simulations of highly-compressible convection with kappa-mechanism. Results: This work emphasises some inherent limits of TDC models, that is, the temporal variability and non-universality of their free parameters. More importantly, within these limits, Stellingwerf's formalism is found to give better spatial and temporal agreements with the nonlinear simulation than Kuhfuss's one. It may therefore be preferred in 1-D TDC hydrocodes or stellar evolution codes.Comment: 7 pages, 5 figures, 2 tables, accepted for publication in A&

    Enhanced RFB method

    Get PDF
    The residual-free bubble method (RFB) is a parameter-free stable finite element method that has been applied successfully to solve a wide range of boundary-value problems presenting multiple-scale behavior. If some local features of the solution are known a-priori, the RFB finite element space approximation properties can be increased by enriching it on some specific edges of the partition (see[7]). Based on such idea, we define and analyse the enhanced residual-free bubbles method for the solution of convection-dominated convection-diffusion problems in 2-D. Our a-priori analysis enlightens the limitations of the RFB method and the superior global convergence properties of the new method. The theoretical results are supported by extensive numerical experimentation.\ud \ud The first author acknowledges the financial support of INdAM and EPSR

    Free convection in the Martian atmosphere

    Get PDF
    Researchers investigated the free convective regime for the Martian atmospheric boundary layer (ABL). Researchers generalized Schumann's model describing horizontal fluctuations and mean vertical gradients occurring during free convection to include convection driven by water vapor gradients and to include the effects of circulation above both aerodynamically smooth and rough surfaces. Applying the model to Mars, researchers found that nearly all the resistance to sensible and latent heat transfer in the ABL occurs within the thin interfacial sublayer at the surface. Free convection is found to readily occur at low pressures and high temperatures when surface ice is present. At 7 mb, the ABL should freely convect whenever the mean windspeed at the top of the surface layer drops below about 2.5 m s(-1) and surface temperatures exceed 250 K. Mean horizontal fluctuations within the surface layer are found to be as high as 3 m (-1) for windspeed, 0.5 K for temperature, and 10 (-4) kg m (-3) for water vapor density. Airflow over surfaces similar to the Antarctic Polar Plateau was found to be aerodynamically smooth on Mars during free convection for all pressures between 6 and 1000 mb, while surfaces with z sub o approx. equals 1 cm are aerodynamically rough over this pressure range

    Free Thermal Convection Driven by Nonlocal Effects

    Full text link
    We report and explain a convective phenomenon observed in molecular dynamics simulations that cannot be classified either as a hydrodynamics instability nor as a macroscopically forced convection. Two complementary arguments show that the velocity field by a thermalizing wall is proportional to the ratio between the heat flux and the pressure. This prediction is quantitatively corroborated by our simulations.Comment: RevTex, figures is eps, submited for publicatio
    corecore