183 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationPortable electronic devices will be limited to available energy of existing battery chemistries for the foreseeable future. However, system-on-chips (SoCs) used in these devices are under a demand to offer more functionality and increased battery life. A difficult problem in SoC design is providing energy-efficient communication between its components while maintaining the required performance. This dissertation introduces a novel energy-efficient network-on-chip (NoC) communication architecture. A NoC is used within complex SoCs due it its superior performance, energy usage, modularity, and scalability over traditional bus and point-to-point methods of connecting SoC components. This is the first academic research that combines asynchronous NoC circuits, a focus on energy-efficient design, and a software framework to customize a NoC for a particular SoC. Its key contribution is demonstrating that a simple, asynchronous NoC concept is a good match for low-power devices, and is a fruitful area for additional investigation. The proposed NoC is energy-efficient in several ways: simple switch and arbitration logic, low port radix, latch-based router buffering, a topology with the minimum number of 3-port routers, and the asynchronous advantages of zero dynamic power consumption while idle and the lack of a clock tree. The tool framework developed for this work uses novel methods to optimize the topology and router oorplan based on simulated annealing and force-directed movement. It studies link pipelining techniques that yield improved throughput in an energy-efficient manner. A simulator is automatically generated for each customized NoC, and its traffic generators use a self-similar message distribution, as opposed to Poisson, to better match application behavior. Compared to a conventional synchronous NoC, this design is superior by achieving comparable message latency with half the energy

    The Architecture and Programming of a Fine-Grain Multicomputer

    Get PDF
    The research presented in this thesis was conducted in the context of the Mosaic C, an experimental, fine-grain multicomputer. The objective of the Mosaic experiment was to develop a concurrent-computing system with maximum performance per unit cost, while still retaining a general-purpose application span. A stipulation of the Mosaic project was that the complexity of a Mosaic node be limited by the silicon complexity available on a single VLSI chip. The two most important original results reported in the thesis are: (1) The design and implementation of C+-, a concurrent, object-oriented programming system. Syntactically, C+- is an extension of C++. The concurrent semantics of C+- are contained within the process concept. A C+- process is analogous to a C++ object, but it is also an autonomous computing agent, and a unit of potential concurrency. Atomic single-process updates that can be individually enabled and disabled are the execution units of the concurrent computation. The limited set of primitives that C+- provides is shown to be sufficient to express a variety of concurrent-programming problems concisely and efficiently. An important design requirement for C+- was that efficient implementations should exist on a variety of concurrent architectures, and, in particular, on the simple and inexpensive hardware of the Mosaic node. The Mosaic runtime system was written entirely in C+-. (2) Pipeline synchronization, a novel, generally- applicable technique for hardware synchronization. This technique is a simple, low-cost, high-bandwidth, high- reliability solution to interfaces between synchronous and asynchronous systems, or between synchronous systems operating from different clocks. The technique can sustain the full communication bandwidth and achieve an arbitrarily low, non-zero probability of synchronization failure, Pf, with the price in both latency and chip area being O(log 1/Pf). Pipeline synchronization has been successfully applied to the highperformance inter-computer communication in Mosaic node ensembles

    Interpreted graph models

    Get PDF
    A model class called an Interpreted Graph Model (IGM) is defined. This class includes a large number of graph-based models that are used in asynchronous circuit design and other applications of concurrecy. The defining characteristic of this model class is an underlying static graph-like structure where behavioural semantics are attached using additional entities, such as tokens or node/arc states. The similarities in notation and expressive power allow a number of operations on these formalisms, such as visualisation, interactive simulation, serialisation, schematic entry and model conversion to be generalised. A software framework called Workcraft was developed to take advantage of these properties of IGMs. Workcraft provides an environment for rapid prototyping of graph-like models and related tools. It provides a large set of standardised functions that considerably facilitate the task of providing tool support for any IGM. The concept of Interpreted Graph Models is the result of research on methods of application of lower level models, such as Petri nets, as a back-end for simulation and verification of higher level models that are more easily manipulated. The goal is to achieve a high degree of automation of this process. In particular, a method for verification of speed-independence of asynchronous circuits is presented. Using this method, the circuit is specified as a gate netlist and its environment is specified as a Signal Transition Graph. The circuit is then automatically translated into a behaviourally equivalent Petri net model. This model is then composed with the specification of the environment. A number of important properties can be established on this compound model, such as the absence of deadlocks and hazards. If a trace is found that violates the required property, it is automatically interpreted in terms of switching of the gates in the original gate-level circuit specification and may be presented visually to the circuit designer. A similar technique is also used for the verification of a model called Static Data Flow Structure (SDFS). This high level model describes the behaviour of an asynchronous data path. SDFS is particularly interesting because it models complex behaviours such as preemption, early evaluation and speculation. Preemption is a technique which allows to destroy data objects in a computation pipeline if the result of computation is no longer needed, reducing the power consumption. Early evaluation allows a circuit to compute the output using a subset of its inputs and preempting the inputs which are not needed. In speculation, all conflicting branches of computation run concurrently without waiting for the selecting condition; once the selecting condition is computed the unneeded branches are preempted. The automated Petri net based verification technique is especially useful in this case because of the complex nature of these features. As a result of this work, a number of cases are presented where the concept of IGMs and the Workcraft tool were instrumental. These include the design of two different types of arbiter circuits, the design and debugging of the SDFS model, synthesis of asynchronous circuits from the Conditional Partial Order Graph model and the modification of the workflow of Balsa asynchronous circuit synthesis system.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    CSP for Executable Scientific Workflows

    Get PDF

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout
    • …
    corecore