26,150 research outputs found

    Contextual Outlier Interpretation

    Full text link
    Outlier detection plays an essential role in many data-driven applications to identify isolated instances that are different from the majority. While many statistical learning and data mining techniques have been used for developing more effective outlier detection algorithms, the interpretation of detected outliers does not receive much attention. Interpretation is becoming increasingly important to help people trust and evaluate the developed models through providing intrinsic reasons why the certain outliers are chosen. It is difficult, if not impossible, to simply apply feature selection for explaining outliers due to the distinct characteristics of various detection models, complicated structures of data in certain applications, and imbalanced distribution of outliers and normal instances. In addition, the role of contrastive contexts where outliers locate, as well as the relation between outliers and contexts, are usually overlooked in interpretation. To tackle the issues above, in this paper, we propose a novel Contextual Outlier INterpretation (COIN) method to explain the abnormality of existing outliers spotted by detectors. The interpretability for an outlier is achieved from three aspects: outlierness score, attributes that contribute to the abnormality, and contextual description of its neighborhoods. Experimental results on various types of datasets demonstrate the flexibility and effectiveness of the proposed framework compared with existing interpretation approaches

    Relational Data Mining Through Extraction of Representative Exemplars

    Full text link
    With the growing interest on Network Analysis, Relational Data Mining is becoming an emphasized domain of Data Mining. This paper addresses the problem of extracting representative elements from a relational dataset. After defining the notion of degree of representativeness, computed using the Borda aggregation procedure, we present the extraction of exemplars which are the representative elements of the dataset. We use these concepts to build a network on the dataset. We expose the main properties of these notions and we propose two typical applications of our framework. The first application consists in resuming and structuring a set of binary images and the second in mining co-authoring relation in a research team

    ALOJA: A framework for benchmarking and predictive analytics in Hadoop deployments

    Get PDF
    This article presents the ALOJA project and its analytics tools, which leverages machine learning to interpret Big Data benchmark performance data and tuning. ALOJA is part of a long-term collaboration between BSC and Microsoft to automate the characterization of cost-effectiveness on Big Data deployments, currently focusing on Hadoop. Hadoop presents a complex run-time environment, where costs and performance depend on a large number of configuration choices. The ALOJA project has created an open, vendor-neutral repository, featuring over 40,000 Hadoop job executions and their performance details. The repository is accompanied by a test-bed and tools to deploy and evaluate the cost-effectiveness of different hardware configurations, parameters and Cloud services. Despite early success within ALOJA, a comprehensive study requires automation of modeling procedures to allow an analysis of large and resource-constrained search spaces. The predictive analytics extension, ALOJA-ML, provides an automated system allowing knowledge discovery by modeling environments from observed executions. The resulting models can forecast execution behaviors, predicting execution times for new configurations and hardware choices. That also enables model-based anomaly detection or efficient benchmark guidance by prioritizing executions. In addition, the community can benefit from ALOJA data-sets and framework to improve the design and deployment of Big Data applications.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639595). This work is partially supported by the Ministry of Economy of Spain under contracts TIN2012-34557 and 2014SGR1051.Peer ReviewedPostprint (published version

    Active learning in annotating micro-blogs dealing with e-reputation

    Full text link
    Elections unleash strong political views on Twitter, but what do people really think about politics? Opinion and trend mining on micro blogs dealing with politics has recently attracted researchers in several fields including Information Retrieval and Machine Learning (ML). Since the performance of ML and Natural Language Processing (NLP) approaches are limited by the amount and quality of data available, one promising alternative for some tasks is the automatic propagation of expert annotations. This paper intends to develop a so-called active learning process for automatically annotating French language tweets that deal with the image (i.e., representation, web reputation) of politicians. Our main focus is on the methodology followed to build an original annotated dataset expressing opinion from two French politicians over time. We therefore review state of the art NLP-based ML algorithms to automatically annotate tweets using a manual initiation step as bootstrap. This paper focuses on key issues about active learning while building a large annotated data set from noise. This will be introduced by human annotators, abundance of data and the label distribution across data and entities. In turn, we show that Twitter characteristics such as the author's name or hashtags can be considered as the bearing point to not only improve automatic systems for Opinion Mining (OM) and Topic Classification but also to reduce noise in human annotations. However, a later thorough analysis shows that reducing noise might induce the loss of crucial information.Comment: Journal of Interdisciplinary Methodologies and Issues in Science - Vol 3 - Contextualisation digitale - 201

    Adapted K-Nearest Neighbors for Detecting Anomalies on Spatio–Temporal Traffic Flow

    Get PDF
    Outlier detection is an extensive research area, which has been intensively studied in several domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This paper explores advances in the outlier detection area by finding anomalies in spatio-temporal urban traffic flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The flow distribution probability (FDP) databases are first constructed from the traffic flows by considering both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show that our approach outperforms the baseline algorithms for high-urban traffic flow
    • …
    corecore