4,409 research outputs found

    Forecasting Player Behavioral Data and Simulating in-Game Events

    Full text link
    Understanding player behavior is fundamental in game data science. Video games evolve as players interact with the game, so being able to foresee player experience would help to ensure a successful game development. In particular, game developers need to evaluate beforehand the impact of in-game events. Simulation optimization of these events is crucial to increase player engagement and maximize monetization. We present an experimental analysis of several methods to forecast game-related variables, with two main aims: to obtain accurate predictions of in-app purchases and playtime in an operational production environment, and to perform simulations of in-game events in order to maximize sales and playtime. Our ultimate purpose is to take a step towards the data-driven development of games. The results suggest that, even though the performance of traditional approaches such as ARIMA is still better, the outcomes of state-of-the-art techniques like deep learning are promising. Deep learning comes up as a well-suited general model that could be used to forecast a variety of time series with different dynamic behaviors

    Computational framework to analyze agrometeorological, climate and remote sensing data: challenges and perspectives.

    Get PDF
    In the past few years, improvements in the data acquisition technology have decreased the time interval of data gathering. Consequently, institutions have stored huge amounts of data such as climate time series and remote sensing images. Computational models to filter, transform, merge and analyze data from many different areas are complex and challenging. The complexity increases even more when combining several knowledge domains. Examples are research in climatic changes, biofuel production and environmental problems. A possible solution to the problem is the association of several computational techniques. Accordingly, this paper presents a framework to analyze, monitor and visualize climate and remote sensing data by employing methods based on fractal theory, data mining and visualization techniques. Initial experiments showed that the information and knowledge discovered from this framework can be employed to monitor sugar cane crops, helping agricultural entrepreneurs to make decisions in order to become more productive. Sugar cane is the main source to ethanol production in Brazil, and has a strategic importance for the country economy and to guarantee the Brazilian self-sufficiency in this important, renewable source of energy.CSBC 2009

    DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection

    Full text link
    The increasing use of electronic forms of communication presents new opportunities in the study of mental health, including the ability to investigate the manifestations of psychiatric diseases unobtrusively and in the setting of patients' daily lives. A pilot study to explore the possible connections between bipolar affective disorder and mobile phone usage was conducted. In this study, participants were provided a mobile phone to use as their primary phone. This phone was loaded with a custom keyboard that collected metadata consisting of keypress entry time and accelerometer movement. Individual character data with the exceptions of the backspace key and space bar were not collected due to privacy concerns. We propose an end-to-end deep architecture based on late fusion, named DeepMood, to model the multi-view metadata for the prediction of mood scores. Experimental results show that 90.31% prediction accuracy on the depression score can be achieved based on session-level mobile phone typing dynamics which is typically less than one minute. It demonstrates the feasibility of using mobile phone metadata to infer mood disturbance and severity.Comment: KDD 201

    R-CAD: Rare Cyber Alert Signature Relationship Extraction Through Temporal Based Learning

    Get PDF
    The large number of streaming intrusion alerts make it challenging for security analysts to quickly identify attack patterns. This is especially difficult since critical alerts often occur too rarely for traditional pattern mining algorithms to be effective. Recognizing the attack speed as an inherent indicator of differing cyber attacks, this work aggregates alerts into attack episodes that have distinct attack speeds, and finds attack actions regularly co-occurring within the same episode. This enables a novel use of the constrained SPADE temporal pattern mining algorithm to extract consistent co-occurrences of alert signatures that are indicative of attack actions that follow each other. The proposed Rare yet Co-occurring Attack action Discovery (R-CAD) system extracts not only the co-occurring patterns but also the temporal characteristics of the co-occurrences, giving the `strong rules\u27 indicative of critical and repeated attack behaviors. Through the use of a real-world dataset, we demonstrate that R-CAD helps reduce the overwhelming volume and variety of intrusion alerts to a manageable set of co-occurring strong rules. We show specific rules that reveal how critical attack actions follow one another and in what attack speed

    Time Series Mining: Shapelet Discovery, Ensembling, and Applications

    Get PDF
    Time series is a prominent class of temporal data sequences that has the properties of being equally spaced in time, chronologically ordered, and highly dimensional. Time series classification is an important branch of time series mining. Existing time series classifiers operate either on row data in the time domain or into an alternate data space in the shapelets or frequency domains. Combining time series classifiers, is another powerful technique used to improve the classification accuracy. It was demonstrated that different classifiers can be expert in predicting different subset of classes over others. The challenge lies in learning the expertise of different base learners. In addition, the high dimensionality characteristic of time series data makes it difficult to visualize their distribution. In this thesis we developed a new time series ensembling methods in order to improve the predictive performance, investigated the interpretability of classifiers by leveraging the power of deep learning models and adjusting them to provide visual shapelets as a by-product of the classification task. Finally, we show application through problems of solar energetic particle events prediction

    Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience.

    Get PDF
    Identifying low-dimensional features that describe large-scale neural recordings is a major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality reduction techniques. Here, we describe a software toolbox-called seqNMF-with new methods for extracting informative, non-redundant, sequences from high-dimensional neural data, testing the significance of these extracted patterns, and assessing the prevalence of sequential structure in data. We test these methods on simulated data under multiple noise conditions, and on several real neural and behavioral datas. In hippocampal data, seqNMF identifies neural sequences that match those calculated manually by reference to behavioral events. In songbird data, seqNMF discovers neural sequences in untutored birds that lack stereotyped songs. Thus, by identifying temporal structure directly from neural data, seqNMF enables dissection of complex neural circuits without relying on temporal references from stimuli or behavioral outputs
    corecore