4,016 research outputs found

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Automatic Modulation Classification Using Cyclic Features via Compressed Sensing

    Get PDF
    Cognitive Radios (CRs) are designed to operate with minimal interference to the Primary User (PU), the incumbent to a radio spectrum band. To ensure that the interference generated does not exceed a specific level, an estimate of the Signal to Interference plus Noise Ratio (SINR) for the PU’s channel is required. This can be accomplished through determining the modulation scheme in use, as it is directly correlated with the SINR. To this end, an Automatic Modulation Classification (AMC) scheme is developed via cyclic feature detection that is successful even with signal bandwidths that exceed the sampling rate of the CR. In order to accomplish this, Compressed Sensing (CS) is applied, allowing for reconstruction, even with very few samples. The use of CS in spectrum sensing and interpretation is becoming necessary for a growing number of scenarios where the radio spectrum band of interest cannot be fully measured, such as low cost sensor networks, or high bandwidth radio localization services. In order to be able to classify a wide range of modulation types, cumulants were chosen as the feature to use. They are robust to noise and provide adequate discrimination between different types of modulation, even those that are fairly similar, such as 16-QAM and 64-QAM. By fusing cumulants and CS, a novel method of classification was developed which inherited the noise resilience of cumulants, and the low sample requirements of CS. Comparisons are drawn between the proposed method and existing ones, both in terms of accuracy and resource usages. The proposed method is shown to perform similarly when many samples are gathered, and shows improvement over existing methods at lower sample counts. It also uses less resources, and is able to produce an estimate faster than the current systems

    A Data Fusion Technique to Detect Wireless Network Virtual Jamming Attacks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Wireless communications are potentially exposed to jamming due to the openness of the medium and, in particular, to virtual jamming, which allows more energy-efficient attacks. In this paper we tackle the problem of virtual jamming attacks on IEEE 802.11 networks and present a data fusion solution for the detection of a type of virtual jamming attack (namely, NAV attacks), based on the real-time monitoring of a set of metrics. The detection performance is evaluated in a number of real scenarios
    • …
    corecore