51 research outputs found

    A distributed workload-aware approach to partitioning geospatial big data for cybergis analytics

    Get PDF
    Numerous applications and scientific domains have contributed to tremendous growth of geospatial data during the past several decades. To resolve the volume and velocity of such big data, distributed system approaches have been extensively studied to partition data for scalable analytics and associated applications. However, previous work on partitioning large geospatial data focuses on bulk-ingestion and static partitioning, hence is unable to handle dynamic variability in both data and computation that are particularly common for streaming data. To eliminate this limitation, this thesis holistically addresses computational intensity and dynamic data workload to achieve optimal data partitioning for scalable geospatial applications. Specifically, novel data partitioning algorithms have been developed to support scalable geospatial and temporal data management with new data models designed to represent dynamic data workload. Optimal partitions are realized by formulating a fine-grain spatial optimization problem that is solved using an evolutionary algorithm with spatially explicit operations. As an overarching approach to integrating the algorithms, data models and spatial optimization problem solving, GeoBalance is established as a workload-aware framework for supporting scalable cyberGIS (i.e. geographic information science and systems based on advanced cyberinfrastructure) analytics

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    A framework for multidimensional indexes on distributed and highly-available data stores

    Get PDF
    Spatial Big Data is considered an essential trend in future scientific and business applications. Indeed, research instruments, medical devices, and social networks generate hundreds of peta bytes of spatial data per year. However, as many authors have pointed out, the lack of specialized frameworks dealing with such kind of data is limiting possible applications and probably precluding many scientific breakthroughs. In this thesis, we describe three HPC scientific applications, ranging from molecular dynamics, neuroscience analysis, and physics simulations, where we experience first hand the limits of the existing technologies. Thanks to our experience, we define the desirable missing functionalities, and we focus on two features that when combined significantly improve the way scientific data is analyzed. On one side, scientific simulations generate complex datasets where multiple correlated characteristics describe each item. For instance, a particle might have a space position (x,y,z) at a given time (t). If we want to find all elements within the same area and period, we either have to scan the whole dataset, or we must organize the data so that all items in the same space and time are stored together. The second approach is called Multidimensional Indexing (MI), and it uses different techniques to cluster and to organize similar data together. On the other side, approximate analytics has been often indicated as a smart and flexible way to explore large datasets in a short period. Approximate analytics includes a broad family of algorithms which aims to speed up analytical workloads by relaxing the precision of the results within a specific interval of confidence. For instance, if we want to know the average age in a group with 1-year precision, we can consider just a random fraction of all the people, thus reducing the amount of calculation. But if we also want less I/O operations, we need efficient data sampling, which means organizing data in a way that we do not need to scan the whole data set to generate a random sample of it. According to our analysis, combining Multidimensional Indexing with efficient data Sampling (MIS) is a vital missing feature not available in the current distributed data management solutions. This thesis aims to solve such a shortcoming and it provides novel scalable solutions. At first, we describe the existing data management alternatives; then we motivate our preference for NoSQL key-value databases. Secondly, we propose an analytical model to study the influence of data models on the scalability and performance of this kind of distributed database. Thirdly, we use the analytical model to design two novel multidimensional indexes with efficient data sampling: the D8tree and the AOTree. Our first solution, the D8tree, improves state of the art for approximate spatial queries on static and mostly read dataset. Later, we enhanced the data ingestion capability or our approach by introducing the AOTree, an algorithm that enables the query performance of the D8tree even for HPC write-intensive applications. We compared our solution with PostgreSQL and plain storage, and we demonstrate that our proposal has better performance and scalability. Finally, we describe Qbeast, the novel distributed system that implements the D8tree and the AOTree using NoSQL technologies, and we illustrate how Qbeast simplifies the workflow of scientists in various HPC applications providing a scalable and integrated solution for data analysis and management.La gestión de BigData con información espacial está considerada como una tendencia esencial en el futuro de las aplicaciones científicas y de negocio. De hecho, se generan cientos de petabytes de datos espaciales por año mediante instrumentos de investigación, dispositivos médicos y redes sociales. Sin embargo, tal y como muchos autores han señalado, la falta de entornos especializados en manejar este tipo de datos está limitando sus posibles aplicaciones y está impidiendo muchos avances científicos. En esta tesis, describimos 3 aplicaciones científicas HPC, que cubren los ámbitos de dinámica molecular, análisis neurocientífico y simulaciones físicas, donde hemos experimentado en primera mano las limitaciones de las tecnologías existentes. Gracias a nuestras experiencias, hemos podido definir qué funcionalidades serían deseables y no existen, y nos hemos centrado en dos características que, al combinarlas, mejoran significativamente la manera en la que se analizan los datos científicos. Por un lado, las simulaciones científicas generan conjuntos de datos complejos, en los que cada elemento es descrito por múltiples características correlacionadas. Por ejemplo, una partícula puede tener una posición espacial (x, y, z) en un momento dado (t). Si queremos encontrar todos los elementos dentro de la misma área y periodo, o bien recorremos y analizamos todo el conjunto de datos, o bien organizamos los datos de manera que se almacenen juntos todos los elementos que comparten área en un momento dado. Esta segunda opción se conoce como Indexación Multidimensional (IM) y usa diferentes técnicas para agrupar y organizar datos similares. Por otro lado, se suele señalar que las analíticas aproximadas son una manera inteligente y flexible de explorar grandes conjuntos de datos en poco tiempo. Este tipo de analíticas incluyen una amplia familia de algoritmos que acelera el tiempo de procesado, relajando la precisión de los resultados dentro de un determinado intervalo de confianza. Por ejemplo, si queremos saber la edad media de un grupo con precisión de un año, podemos considerar sólo un subconjunto aleatorio de todas las personas, reduciendo así la cantidad de cálculo. Pero si además queremos menos operaciones de entrada/salida, necesitamos un muestreo eficiente de datos, que implica organizar los datos de manera que no necesitemos recorrerlos todos para generar una muestra aleatoria. De acuerdo con nuestros análisis, la combinación de Indexación Multidimensional con Muestreo eficiente de datos (IMM) es una característica vital que no está disponible en las soluciones actuales de gestión distribuida de datos. Esta tesis pretende resolver esta limitación y proporciona unas soluciones novedosas que son escalables. En primer lugar, describimos las alternativas de gestión de datos que existen y motivamos nuestra preferencia por las bases de datos NoSQL basadas en clave-valor. En segundo lugar, proponemos un modelo analítico para estudiar la influencia que tienen los modelos de datos sobre la escalabilidad y el rendimiento de este tipo de bases de datos distribuidas. En tercer lugar, usamos el modelo analítico para diseñar dos novedosos algoritmos IMM: el D8tree y el AOTree. Nuestra primera solución, el D8tree, mejora el estado del arte actual para consultas espaciales aproximadas, cuando el conjunto de datos es estático y mayoritariamente de lectura. Después, mejoramos la capacidad de ingestión introduciendo el AOTree, un algoritmo que conserva el rendimiento del D8tree incluso para aplicaciones HPC intensivas en escritura. Hemos comparado nuestra solución con PostgreSQL y almacenamiento plano demostrando que nuestra propuesta mejora tanto el rendimiento como la escalabilidad. Finalmente, describimos Qbeast, el sistema que implementa los algoritmos D8tree y AOTree, e ilustramos cómo Qbeast simplifica el flujo de trabajo de los científicos ofreciendo una solución escalable e integraPostprint (published version

    A Modular Parallel Pipeline Architecture for GWAS Applications in a Cluster Environment

    Get PDF
    A Genome Wide Association Study (GWAS) is an important bioinformatics method to associate variants with traits, identify causes of diseases and increase plant and crop production. There are several optimizations for improving GWAS performance, including running applications in parallel. However, it can be difficult for researchers to utilize different data types and workflows using existing approaches. A potential solution for this problem is to model GWAS algorithms as a set of modular tasks. In this thesis, a modular pipeline architecture for GWAS applications is proposed that can leverage a parallel computing environment as well as store and retrieve data using a shared data cache. To show that the proposed architecture increases performance of GWAS applications, two case studies are conducted in which the proposed architecture is implemented on a bioinformatics pipeline package called TASSEL and a GWAS application called FaST-LMM using both Apache Spark and Dask as the parallel processing framework and Redis as the shared data cache. The case studies implement parallel processing modules and shared data cache modules according to the specifications of the proposed architecture. Based on the case studies, a number of experiments are conducted that compare the performance of the implemented architecture on a cluster environment with the original programs. The experiments reveal that the modified applications indeed perform faster than the original sequential programs. However, the modified applications do not scale with cluster resources, as the sequential part of the operations prevent the parallelization from having linear scalability. Finally, an evaluation of the architecture was conducted based on feedback from software developers and bioinformaticians. The evaluation reveals that the domain experts find the architecture useful; the implementations have sufficient performance improvement and they are also easy to use, although a GUI based implementation would be preferable
    corecore