139,875 research outputs found

    Self-resilient production systems : framework for design synthesis of multi-station assembly systems

    Get PDF
    Product design changes are inevitable in the current trend of time-based competition where product models such as automotive bodies and aircraft fuselages are frequently upgraded and cause assembly process design changes. In recent years, several studies in engineering change management and reconfigurable systems have been conducted to address the challenges of frequent product and process design changes. However, the results of these studies are limited in their applications due to shortcomings in three aspects which are: (i) They rely heavily on past records which might only be a few relevant cases and insufficient to perform a reliable analysis; (ii) They focus mainly on managing design changes in product architecture instead of both product and process architecture; and (iii) They consider design changes at a station-level instead of a multistation level. To address the aforementioned challenges, this thesis proposes three interrelated research areas to simulate the design adjustments of the existing process architecture. These research areas involve: (i) the methodologies to model the existing process architecture design in order to use the developed models as assembly response functions for assessing Key Performance Indices (KPIs); (ii) the KPIs to assess quality, cost, and design complexity of the existing process architecture design which are used when making decisions to change the existing process architecture design; and (iii) the methodology to change the process architecture design to new optimal design solutions at a multi-station level. In the first research area, the methodology in modeling the functional dependence of process variables within the process architecture design are presented as well as the relations from process variables and product architecture design. To understand the engineering change propagation chain among process variables within the process architecture design, a functional dependence model is introduced to represent the design dependency among process variables by cascading relationships from customer requirements, product architecture, process architecture, and design tasks to optimise process variable design. This model is used to estimate the level of process variable design change propagation in the existing process architecture design Next, process yield, cost, and complexity indices are introduced and used as KPIs in this thesis to measure product quality, cost in changing the current process design, and dependency of process variables (i.e, change propagation), respectively. The process yield and complexity indices are obtained by using the Stream-of-Variation (SOVA) model and functional dependence model, respectively. The costing KPI is obtained by determining the cost in optimizing tolerances of process variables. The implication of the costing KPI on the overall cost in changing process architecture design is also discussed. These three comprehensive indices are used to support decision-making when redesigning the existing process architecture. Finally, the framework driven by functional optimisation is proposed to adjust the existing process architecture to meet the engineering change requirements. The framework provides a platform to integrate and analyze several individual design synthesis tasks which are necessary to optimise the multi-stage assembly processes such as tolerance of process variables, fixture layouts, or part-to-part joints. The developed framework based on transversal of hypergraph and task connectivity matrix which lead to the optimal sequence of these design tasks. In order to enhance visibility on the dependencies and hierarchy of design tasks, Design Structure Matrix and Task Flow Chain are also adopted. Three scenarios of engineering changes in industrial automotive design are used to illustrate the application of the proposed redesign methodology. The thesis concludes that it is not necessary to optimise all functional designs of process variables to accommodate the engineering changes. The selection of only relevant functional designs is sufficient, but the design optimisation of the process variables has to be conducted at the system level with consideration of dependency between selected functional designs

    Towards sustainable livestock systems: Developing and applying methods for broad sustainability assessment of pig and cattle systems

    Get PDF
    Meat and milk are valuable foods from livestock that contribute to quality of life for humans but have negative environmental, social and economic impacts. Measuring such impacts in sustainability assessments requires methods with a broad and deep focus. The overall aim of this thesis was to further develop sustainability assessment methods to broadly evaluate livestock systems and to use these methods to increase knowledge on how future sustainable pig and cattle production systems can be developed. Social life cycle assessment (S-LCA), Life cycle sustainability assessment (LCSA) and the One Health framework were developed further and used to assess the impacts of the different livestock systems i.e. organic and conventional Swedish pig production, future pig production scenarios and three cattle systems (cropland based dairy, grassland based dairy and grassland based suckler beef production) in southern Europe. S-LCA, LCSA and the One Health framework sustainability methods can assess important sustainability aspects for pig and cattle production systems and identify important trade-offs. Organic pig production had lower social risk for negative social impacts for pigs and consumers than conventional pig production but higher environmental impacts per kg for eutrophication, acidification and fossil depletion. Grassland based suckler beef production was more resilient to economic losses due to changes in interest rates, input prices and output prices, produced more protein (in meat) than found in the feed and had higher profitability compared to the other cattle systems. However, grassland based beef production had higher eutrophication, acidification and fossil depletion compared to the dairy systems. Changing the breeding goal of pigs, changing the diet composition by including silage and having other protein sources than soybean, and using renewable energy sources in future pig production can further reduce negative impacts

    Scaling Up Climate Action to Achieve the Sustainable Development Goals

    Get PDF
    In 2015, UNDP released its first infographic report that presented the breadth and depth of our support on climate change over the past two decades. That report emphasized successes and noted the opportunities that climate action presents for countries as they transition their economies towards zero-carbon and climate-resilient sustainable development.This year, as countries begin to take concrete action to deliver on their national climate goals, we are pleased to release an updated report of UNDP's climate change work. New, in this report, is a special focus on the linkages between climate change and sustainable development. Specifically, the report highlights the importance of climate action in delivering on the SDGs and provides examples of UNDP's on-going work on the ground towards this end. The report also presents UNDP's commitment to scale up climate change action in order to deliver on the ambitious agenda that countries agreed to in 2015." – Magdy Martinez-Solima

    Mitigating Safety Concerns and Profit/Production Losses for Chemical Process Control Systems Under Cyberattacks via Design/Control Methods

    Get PDF
    One of the challenges for chemical processes today, from a safety and profit standpoint, is the potential that cyberattacks could be performed on components of process control systems. Safety issues could be catastrophic; however, because the nonlinear systems definition of a cyberattack has similarities to a nonlinear systems definition of faults, many processes have already been instrumented to handle various problematic input conditions. Also challenging is the question of how to design a system that is resilient to attacks attempting to impact the production volumes or profits of a company. In this work, we explore a process/equipment design framework for handling safety issues in the presence of cyberattacks (in the spirit of traditional HAZOP thinking), and present a method for bounding the profit/production loss which might be experienced by a plant under a cyberattack through the use of a sufficiently conservative operating strategy combined with the assumption that an attack detection method with characterizable time to detection is available

    The Rise of the Resilient Local Authority?

    Get PDF
    The term resilience is increasingly being utilised within the study of public policy to depict how individuals, communities and organisations can adapt, cope, and ‘bounce back’ when faced with external shocks such as climate change, economic recession and cuts in public expenditure. In focussing on the local dimensions of the resilience debate, this article argues that the term can provide useful insights into how the challenges facing local authorities in the UK can be reformulated and reinterpreted. The article also distinguishes between resilience as ‘recovery’ and resilience as ‘transformation’, with the latter's focus on ‘bouncing forward’ from external shocks seen as offering a more radical framework within which the opportunities for local innovation and creativity can be assessed and explained. While also acknowledging some of the weaknesses of the resilience debate, the dangers of conceptual ‘stretching’, and the extent of local vulnerabilities, the article highlights a range of examples where local authorities – and crucially, local communities – have enhanced their adaptive capacity, within existing powers and responsibilities. From this viewpoint, some of the barriers to the development of resilient local government are not insurmountable, and can be overcome by ‘digging deep’ to draw upon existing resources and capabilities, promoting a strategic approach to risk, exhibiting greater ambition and imagination, and creating space for local communities to develop their own resilience

    Lean and green – a systematic review of the state of the art literature

    Get PDF
    The move towards greener operations and products has forced companies to seek alternatives to balance efficiency gains and environmental friendliness in their operations and products. The exploration of the sequential or simultaneous deployment of lean and green initiatives is the results of this balancing action. However, the lean-green topic is relatively new, and it lacks of a clear and structured research definition. Thus, this paper’s main contribution is the offering of a systematic review of the existing literature on lean and green, aimed at providing guidance on the topic, uncovering gaps and inconsistencies in the literature, and finding new paths for research. The paper identifies and structures, through a concept map, six main research streams that comprise both conceptual and empirical research conducted within the context of various organisational functions and industrial sectors. Important issues for future research are then suggested in the form of research questions. The paper’s aim is to also contribute by stimulating scholars to further study this area in depth, which will lead to a better understanding of the compatibility and impact on organisational performance of lean and green initiatives. It also holds important implications for industrialists, who can develop a deeper and richer knowledge on lean and green to help them formulate more effective strategies for their deployment
    • 

    corecore