1,909 research outputs found

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices

    Towards Inferring Mechanical Lock Combinations using Wrist-Wearables as a Side-Channel

    Full text link
    Wrist-wearables such as smartwatches and fitness bands are equipped with a variety of high-precision sensors that support novel contextual and activity-based applications. The presence of a diverse set of on-board sensors, however, also expose an additional attack surface which, if not adequately protected, could be potentially exploited to leak private user information. In this paper, we investigate the feasibility of a new attack that takes advantage of a wrist-wearable's motion sensors to infer input on mechanical devices typically used to secure physical access, for example, combination locks. We outline an inference framework that attempts to infer a lock's unlock combination from the wrist motion captured by a smartwatch's gyroscope sensor, and uses a probabilistic model to produce a ranked list of likely unlock combinations. We conduct a thorough empirical evaluation of the proposed framework by employing unlocking-related motion data collected from human subject participants in a variety of controlled and realistic settings. Evaluation results from these experiments demonstrate that motion data from wrist-wearables can be effectively employed as a side-channel to significantly reduce the unlock combination search-space of commonly found combination locks, thus compromising the physical security provided by these locks

    Resource consumption analysis of online activity recognition on mobile phones and smartwatches

    Get PDF
    Most of the studies on human activity recognition using smartphones and smartwatches are performed in an offline manner. In such studies, collected data is analyzed in machine learning tools with less focus on the resource consumption of these devices for running an activity recognition system. In this paper, we analyze the resource consumption of human activity recognition on both smartphones and smartwatches, considering six different classifiers, three different sensors, different sampling rates and window sizes. We study the CPU, memory and battery usage with different parameters, where the smartphone is used to recognize seven physical activities and the smartwatch is used to recognize smoking activity. As a result of this analysis, we report that classification function takes a very small amount of CPU time out of total app’s CPU time while sensing and feature calculation consume most of it. When an additional sensor is used besides an accelerometer, such as gyroscope, CPU usage increases significantly. Analysis results also show that increasing the window size reduces the resource consumption more than reducing the sampling rate. As a final remark, we observe that a more complex model using only the accelerometer is a better option than using a simple model with both accelerometer and gyroscope when resource usage is to be reduced

    The Usage of Statistical Learning Methods on Wearable Devices and a Case Study: Activity Recognition on Smartwatches

    Get PDF
    The aim of this study is to explore the usage of statistical learning methods on wearable devices and realize an experimental study for recognition of human activities by using smartwatch sensor data. To achieve this objective, mobile applications that run on smartwatch and smartphone were developed to gain training data and detect human activity momentarily; 500 pattern data were obtained with 4‐second intervals for each activity (walking, typing, stationary, running, standing, writing on board, brushing teeth, cleaning and writing). Created dataset was tested with five different statistical learning methods (Naive Bayes, k nearest neighbour (kNN), logistic regression, Bayesian network and multilayer perceptron) and their performances were compared
    corecore