23,831 research outputs found

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    Practical service placement approach for microservices architecture

    Get PDF
    Community networks (CNs) have gained momentum in the last few years with the increasing number of spontaneously deployed WiFi hotspots and home networks. These networks, owned and managed by volunteers, offer various services to their members and to the public. To reduce the complexity of service deployment, community micro-clouds have recently emerged as a promising enabler for the delivery of cloud services to community users. By putting services closer to consumers, micro-clouds pursue not only a better service performance, but also a low entry barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of the services is not so simple. Due to the large and irregular topology, high software and hardware diversity of CNs, it requires of aPeer ReviewedPostprint (author's final draft
    • …
    corecore