1,095 research outputs found

    Unmanned Aerial Vehicle for Internet of Everything: Opportunities and Challenges

    Get PDF
    The recent advances in information and communication technology (ICT) have further extended Internet of Things (IoT) from the sole "things" aspect to the omnipotent role of "intelligent connection of things". Meanwhile, the concept of internet of everything (IoE) is presented as such an omnipotent extension of IoT. However, the IoE realization meets critical challenges including the restricted network coverage and the limited resource of existing network technologies. Recently, Unmanned Aerial Vehicles (UAVs) have attracted significant attentions attributed to their high mobility, low cost, and flexible deployment. Thus, UAVs may potentially overcome the challenges of IoE. This article presents a comprehensive survey on opportunities and challenges of UAV-enabled IoE. We first present three critical expectations of IoE: 1) scalability requiring a scalable network architecture with ubiquitous coverage, 2) intelligence requiring a global computing plane enabling intelligent things, 3) diversity requiring provisions of diverse applications. Thereafter, we review the enabling technologies to achieve these expectations and discuss four intrinsic constraints of IoE (i.e., coverage constraint, battery constraint, computing constraint, and security issues). We then present an overview of UAVs. We next discuss the opportunities brought by UAV to IoE. Additionally, we introduce a UAV-enabled IoE (Ue-IoE) solution by exploiting UAVs's mobility, in which we show that Ue-IoE can greatly enhance the scalability, intelligence and diversity of IoE. Finally, we outline the future directions in Ue-IoE.Comment: 21 pages, 9 figure

    UAV Cloud Platform for Precision Farming

    Get PDF
    A new application for Unmanned Aerial Vehicles comes to light daily to solve some of modern society’s problems. One of the mentioned predicaments is the possibility for optimization in agricultural processes. Due to this, a new area arose in the last years of the twentieth century, and it is in constant progression called Precision Farming. Nowadays, a division of this field growth is relative to Unmanned Aerial Vehicles applications. Most traditional methods employed by farmers are ineffective and do not aid in the progression and solution of these issues. However, there are some fields that have the possibility to enhance many agriculture methods, such fields are Cyber-Physical Systems and Cloud Computing. Given its capabilities like aerial surveillance and mapping, Cyber- Physical Systems like Unmanned Aerial Vehicles are being used to monitor vast crops, to gather insightful data thatwould take a lot more time if being collected by hand. However, these systems typically lack computing power and storage capacity, meaning that much of its gathered data cannot be stored and further analyzed locally. That is the obstacle that Cloud Computing can solve. With the possibility to offload computing power by sending the collected data to a cloud, it is possible to leverage the enormous computing power and storage capabilities of remote data-centers to gather and analyze these datasets. This dissertation proposes an architecture for this use case by leveraging the advantages of Cloud Computing to aid the obstacles of Unmanned Aerial Vehicles. Moreover, this dissertation is a collaboration with an on-going Horizon 2020 European project that deals with precision farming and agriculture enhanced by Cyber-Physical Systems.A cada dia que passa, novas aplicações para Veículos aéreos não tripulados são inventadas, de forma a resolver alguns dos problemas actuais da sociedade. Um desses problemas, é a possibilidade de otimização em processos agrículas. Devido a isto, nos últimos anos do século 20 nasceu uma nova área de investigação intitulada Agricultura de alta precisão. Hoje em dia, uma secção desta área diz respeito à inovação nas aplicações com recurso a Veículos aéreos não tripulados. A maioria dos métodos tradicionais usados por agricultores são ineficientes e não auxiliam nem a evolução nem a resolução destes problemas. Contudo, existem algumas áreas científicas que permitem a evoluçao de algumos métodos agrículas, estas áreas são os Sistemas Ciber-Físicos e a Computação na Nuvem. Dadas as suas capacidades tais como a vigilância e mapeamento aéreo, certos Sistemas Ciber-Físicos como os Veículos aéreos não tripulados estão a ser usados para monitorizar vastas culturas de forma a recolher dados que levariam muito mais tempo caso fossem recolhidos manualmente. No entanto, estes sistemas geralmente não detêm grandes capacidades de computação e armazenamento, o que significa que muitos dos dados recolhidos não podem ser armazenados e analisados localmente. É aí que a Computação na Nuvem é útil, com a possibilidade de enviar estes dados para uma nuvem, é possível aproveitar o enorme poder de computação e os recursos de armazenamento dos datacenters remotos para armazenar e analisar estes conjuntos de dados. Esta dissertação propõe uma arquitetura para este caso de uso ao fazer uso das vantagens da Computação na Nuvem de forma a combater os obstáculos dos Veículos aéreos não tripulados. Além disso, esta dissertação é também uma colaboração com um projecto Europeu Horizonte 2020 na área da Agricultura de alta precisão com recurso a Veículos aéreos não tripulados

    Preparing for Future Forest Fires: Emerging Technologies and Innovations

    Get PDF
    Forest fires are part of the global ecosystems occurring for a long time in earth history.  These forest fires are part of the processes which establish the ecosystems and directly influence plant species composition within the ecosystems. However, the anthropogenic effect has changed this relationship causing an increasing number of forest fires Human activities have also changed world climate and future climate is expected to increase in temperature with dire consequences on the earth environment. These changes will profoundly impact on the earth’s socio-economic and human well-being. One of the effects of higher global temperature is increasing forest fires occurrences with stronger intensities.  There is a need to develop innovation and new technologies to manage these future fires. This paper aims to review various innovations and new technologies that can be used for the whole spectrum of forest fire management, from forest fire prediction to forest restoration of burnt areas. Emerging technologies such as geospatial technologies, the Internet of Things (IoT), Artificial Intelligence, 5G & enhanced connectivity, the Internet of Behaviors (IoB), virtual and augmented reality, and robotics are discussed and potential applications to forest fire management are discussed. Adaptation of these technologies is vital in the effective management of future forest fires. Key words: Climate Change, Future Fires, InnovationsKebakaran hutan merupakan bagian dari ekosistem global yang terjadi sejak lama dalam sejarah bumi. Kebakaran hutan ini merupakan bagian dari proses yang membentuk ekosistem dan secara langsung mempengaruhi komposisi spesies tumbuhan di dalam ekosistem. Namun, efek antropogenik telah mengubah hubungan ini yang menyebabkan peningkatan jumlah kebakaran hutan Aktivitas manusia juga telah mengubah iklim dunia dan iklim di masa depan diperkirakan akan meningkatkan suhu dengan konsekuensi yang mengerikan pada lingkungan bumi. Perubahan ini akan sangat berdampak pada sosial ekonomi bumi dan kesejahteraan manusia. Salah satu dampak dari peningkatan suhu global adalah meningkatnya kejadian kebakaran hutan dengan intensitas yang lebih kuat. Ada kebutuhan untuk mengembangkan inovasi dan teknologi baru untuk mengelola kebakaran di masa depan ini. Tulisan ini bertujuan untuk mengkaji berbagai inovasi dan teknologi baru yang dapat digunakan untuk seluruh spektrum penanggulangan kebakaran hutan, mulai dari prediksi kebakaran hutan hingga restorasi hutan pada kawasan yang terbakar. Teknologi yang muncul seperti teknologi geospasial, Internet of Things (IoT), Artificial Intelligence, 5G & konektivitas yang ditingkatkan, Internet of Behaviors (IoB), virtual dan augmented reality, dan robotika dibahas dan aplikasi potensial untuk manajemen kebakaran hutan dibahas. Adaptasi teknologi ini sangat penting dalam pengelolaan kebakaran hutan yang efektif di masa depan. Kata kunci: Perubahan Iklim, Kebakaran di Masa Depan, Inovas

    Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: a review

    Get PDF
    Coastal and marine management require the evaluation of multiple environmental threats and issues. However, there are gaps in the necessary data and poor access or dissemination of existing data in many countries around the world. This research identifies how remote sensing can contribute to filling these gaps so that environmental agencies, such as the United Nations Environmental Programme, European Environmental Agency, and International Union for Conservation of Nature, can better implement environmental directives in a cost-e ective manner. Remote sensing (RS) techniques generally allow for uniform data collection, with common acquisition and reporting methods, across large areas. Furthermore, these datasets are sometimes open-source, mainly when governments finance satellite missions. Some of these data can be used in holistic, coastal and marine environmental management frameworks, such as the DAPSI(W)R(M) framework (Drivers–Activities–Pressures–State changes–Impacts (on Welfare)–Responses (as Measures), an updated version of Drivers–Pressures–State–Impact–Responses. The framework is a useful and holistic problem-structuring framework that can be used to assess the causes, consequences, and responses to change in the marine environment. Six broad classifications of remote data collection technologies are reviewed for their potential contribution to integrated marine management, including Satellite-based Remote Sensing, Aerial Remote Sensing, Unmanned Aerial Vehicles, Unmanned Surface Vehicles, Unmanned Underwater Vehicles, and Static Sensors. A significant outcome of this study is practical inputs into each component of the DAPSI(W)R(M) framework. The RS applications are not expected to be all-inclusive; rather, they provide insight into the current use of the framework as a foundation for developing further holistic resource technologies for management strategies in the future. A significant outcome of this research will deliver practical insights for integrated coastal and marine management and demonstrate the usefulness of RS to support the implementation of environmental goals, descriptors, targets, and policies, such as theWater Framework Directive, Marine Strategy Framework Directive, Ocean Health Index, and United Nations Sustainable Development Goals. Additionally, the opportunities and challenges of these technologies are discussed.Murray Foundation: 25.26022020info:eu-repo/semantics/publishedVersio

    Mini-UAV Based Sensory System for Measuring Environmental Variables in Greenhouses

    Get PDF
    This paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e., a four rotor mini-UAV). The goals of this system include taking measures of temperature, humidity, luminosity and CO2 concentration and plotting maps of these variables. These features could potentially allow for climate control, crop monitoring or failure detection (e.g., a break in a plastic cover). The sensors have been selected by considering the climate and plant growth models and the requirements for their integration onboard the quadrotor. The sensors layout and placement have been determined through a study of quadrotor aerodynamics and the influence of the airflows from its rotors. All components of the system have been developed, integrated and tested through a set of field experiments in a real greenhouse. The primary contributions of this paper are the validation of the quadrotor as a platform for measuring environmental variables and the determination of the optimal location of sensors on a quadrotor.This work has been supported by the Robotics and Cybernetics Research Group at Technical University of Madrid (Spain) and has been funded under the projects “ROTOS: Multi-robot system for outdoor infrastructures protection”, sponsored by the Spanish Ministry of Education, Culture and Sport (DPI2010-17998); the “ROBOCITY 2030 Project”, sponsored by the Autonomous Community of Madrid (S-0505/DPI/ 000235); and the SAVIER Project, sponsored by Airbus Defence & Space.Peer Reviewe

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Integrating virtual reality and GIS tools for geological mapping, data collection and analysis: an example from Metaxa Mine, Santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite
    corecore