549 research outputs found

    Spatio-temporal spike trains analysis for large scale networks using maximum entropy principle and Monte-Carlo method

    Full text link
    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In a first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have been focusing on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In a second part, we present a new method based on Monte-Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles.Comment: 41 pages, 10 figure

    Spatio-Visual Fusion-Based Person Re-Identification for Overhead Fisheye Images

    Full text link
    Person re-identification (PRID) has been thoroughly researched in typical surveillance scenarios where various scenes are monitored by side-mounted, rectilinear-lens cameras. To date, few methods have been proposed for fisheye cameras mounted overhead and their performance is lacking. In order to close this performance gap, we propose a multi-feature framework for fisheye PRID where we combine deep-learning, color-based and location-based features by means of novel feature fusion. We evaluate the performance of our framework for various feature combinations on FRIDA, a public fisheye PRID dataset. The results demonstrate that our multi-feature approach outperforms recent appearance-based deep-learning methods by almost 18% points and location-based methods by almost 3% points in matching accuracy. We also demonstrate the potential application of the proposed PRID framework to people counting in large, crowded indoor spaces

    Feature Extraction for Music Information Retrieval

    Get PDF
    Copyright c © 2009 Jesper Højvang Jensen, except where otherwise stated

    Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images

    Get PDF
    Die sensorübergreifende Personendetektion in einem Netzwerk von 3D-Sensoren ist die Grundlage vieler Anwendungen, wie z.B. Personenzählung, digitale Kundenstromanalyse oder öffentliche Sicherheit. Im Gegensatz zu klassischen Verfahren der Videoüberwachung haben 3D-Sensoren dabei im Allgemeinen eine vertikale top-down Sicht auf die Szene, um das Auftreten von Verdeckungen, wie sie z.B. in einer dicht gedrängten Menschenmenge auftreten, zu reduzieren. Aufgrund der vertikalen top-down Perspektive der Sensoren variiert die äußere Erscheinung von Personen sehr stark in Abhängigkeit von deren Position in der Szene. Des Weiteren sind Personen aufgrund von Verdeckungen, Sensorrauschen sowie dem eingeschränkten Sichtfeld der top-down Sensoren häufig nur partiell in einer einzelnen Ansicht sichtbar. Um diese Herausforderungen zu bewältigen, wird in dieser Arbeit untersucht, wie die räumlich-zeitlichen Multi-View-Beobachtungen von mehreren 3D-Sensoren mit sich überlappenden Sichtbereichen effektiv genutzt werden können. Der Fokus liegt insbesondere auf der Verbesserung der Detektionsleistung durch die gemeinsame Betrachtung sowohl der redundanten als auch der komplementären Multi-Sensor-Beobachtungen, einschließlich des zeitlichen Kontextes. In der Arbeit wird das Problem der Personendetektion in einer Sequenz sich überlappender Tiefenbilder als inverses Problem formuliert. In diesem Kontext wird ein probabilistisches Modell zur Personendetektion in mehreren Tiefenbildern eingeführt. Das Modell beinhaltet ein generatives Szenenmodell, um Personen aus beliebigen Blickwinkeln zu erkennen. Basierend auf der vorgeschlagenen probabilistischen Modellierung werden mehrere Inferenzmethoden untersucht, unter anderem Gradienten-basierte kontinuierliche Optimierung, Variational Inference, sowie Convolutional Neural Networks. Dabei liegt der Schwerpunkt der Arbeit auf dem Einsatz von Variationsmethoden wie Mean-Field Variational Inference. In Abgrenzung zu klassischen Verfahren der Literatur wird hier keine Punkt-Schätzung vorgenommen, sondern die a-posteriori Wahrscheinlichkeitsverteilung der in der Szene anwesenden Personen approximiert. Durch den Einsatz des generativen Vorwärtsmodells, welches die Charakteristik der zugrundeliegenden Sensormodalität beinhaltet, ist das vorgeschlagene Verfahren weitestgehend unabhängig von der konkreten Sensormodalität. Die in der Arbeit vorgestellten Methoden werden anhand eines neu eingeführten Datensatzes zur weitflächigen Personendetektion in mehreren sich überlappenden Tiefenbildern evaluiert. Der Datensatz umfasst Bildmaterial von drei passiven Stereo-Sensoren, welche eine top-down Sicht auf eine Bürosituation vorweisen. In der Evaluation konnte nachgewiesen werden, dass die vorgeschlagene Mean-Field Variational Inference Approximation Stand-der-Technik-Resultate erzielt. Während Deep Learnig Verfahren sehr viele annotierte Trainingsdaten benötigen, basiert die in dieser Arbeit vorgeschlagene Methode auf einem expliziten probabilistischen Modell und benötigt keine Trainingsdaten. Ein weiterer Vorteil zu klassischen Verfahren, welche häufig nur eine MAP Punkt-Schätzung vornehmen, besteht in der Approximation der vollständigen Verbund-Wahrscheinlichkeitsverteilung der in der Szene anwesenden Personen

    Low Latency Anomaly Detection with Imperfect Models

    Get PDF
    The problem of anomaly detection deals with detecting abrupt changes/anomalies in the distribution of sequentially observed data in a stochastic system. This problem applies to many applications, such as signal processing, intrusion detection, quality control, medical diagnosis, etc. A low latency anomaly detection algorithm, which is based on the framework of quickest change detection (QCD), aims at minimizing the detection delay of anomalies in the sequentially observed data while ensuring satisfactory detection accuracy. Moreover, in many practical applications, complete knowledge of the post-change distribution model might not be available due to the unexpected nature of the change. Hence, the objective of this dissertation is to study low latency anomaly detection or QCD algorithms for systems with imperfect models such that any type of abnormality in the system can be detected as quickly as possible for reliable and secured system operations. This dissertation includes the theoretical foundations behind these low latency anomaly detection algorithms along with real-world applications. First, QCD algorithms are designed for detecting changes in systems with multiple post-change models under both Bayesian and non-Bayesian settings. Next, a QCD algorithm is studied for real-time detection of false data injection attacks in smart grids with dynamic models. Finally, a QCD algorithm for detecting wind turbine bearing faults is developed by analyzing the statistical behaviors of stator currents generated by the turbines. For all the proposed algorithms, analytical bounds of the system performance metrics are derived using asymptotic analysis and the simulation results show that the proposed algorithms outperform existing algorithms

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Simulation Modeling to Optimize Personalized Oncology

    Get PDF

    Robust speech recognition based on a Bayesian prediction approach

    Get PDF
    We study a category of robust speech recognition problem in which mismatches exist between training and testing conditions, and no accurate knowledge of the mismatch mechanism is available. The only available information is the test data along with a set of pretrained Gaussian mixture continuous density hidden Markov models (CDHMMs). We investigate the problem from the viewpoint of Bayesian prediction. A simple prior distribution, namely constrained uniform distribution, is adopted to characterize the uncertainty of the mean vectors of the CDHMMs. Two methods, namely a model compensation technique based on Bayesian predictive density and a robust decision strategy called Viterbi Bayesian predictive classification are studied. The proposed methods are compared with the conventional Viterbi decoding algorithm in speaker-independent recognition experiments on isolated digits and TI connected digit strings (TIDTGITS), where the mismatches between training and testing conditions are caused by: (1) additive Gaussian white noise, (2) each of 25 types of actual additive ambient noises, and (3) gender difference. The experimental results show that the adopted prior distribution and the proposed techniques help to improve the performance robustness under the examined mismatch conditions.published_or_final_versio
    • …
    corecore