3,566 research outputs found

    Deep Learning Methods for Instrument Separation and Recognition

    Get PDF
    This thesis explores deep learning methods for timbral information processing in polyphonic music analysis. It encompasses two primary tasks: Music Source Separation (MSS) and Instrument Recognition, with focus on applying domain knowledge and utilising dense arrangements of skip-connections in the frameworks in order to reduce the number of trainable parameters and create more efficient models. Musically-motivated Convolutional Neural Network (CNN) architectures are introduced, emphasizing kernels with vertical, square, and horizontal shapes. This design choice allows for the extraction of essential harmonic and percussive features, which enhances the discrimination of different instruments. Notably, this methodology proves valuable for Harmonic-Percussive Source Separation (HPSS) and instrument recognition tasks. A significant challenge in MSS is generalising to new instrument types and music styles. To address this, a versatile framework for adversarial unsupervised domain adaptation for source separation is proposed, particularly beneficial when labeled data for specific instruments is unavailable. The curation of the Tap & Fiddle dataset is another contribution of the research, offering mixed and isolated stem recordings of traditional Scandinavian fiddle tunes, along with foot-tapping accompaniments, fostering research in source separation and metrical expression analysis within these musical styles. Since our perception of timbre is affected in different ways by transient and stationary parts of sound, the research investigates the potential of Transient Stationary-Noise Decomposition (TSND) as a preprocessing step for frame-level recognition. A method that performs TSND of spectrograms and feeds the decomposed spectrograms to a neural classifier is proposed. Furthermore, this thesis introduces a novel deep learning-based approach for pitch streaming, treating the task as a note-level instrument classification. Such an approach is modular, meaning that it can also successfully stream predicted note-events and not only labelled ground truth note-event information to corresponding instruments. Therefore, the proposed pitch streaming method enables third-party multi-pitch estimation algorithms to perform multi-instrument AMT

    Listening to features

    Get PDF
    This work explores nonparametric methods which aim at synthesizing audio from low-dimensionnal acoustic features typically used in MIR frameworks. Several issues prevent this task to be straightforwardly achieved. Such features are designed for analysis and not for synthesis, thus favoring high-level description over easily inverted acoustic representation. Whereas some previous studies already considered the problem of synthesizing audio from features such as Mel-Frequency Cepstral Coefficients, they mainly relied on the explicit formula used to compute those features in order to inverse them. Here, we instead adopt a simple blind approach, where arbitrary sets of features can be used during synthesis and where reconstruction is exemplar-based. After testing the approach on a speech synthesis from well known features problem, we apply it to the more complex task of inverting songs from the Million Song Dataset. What makes this task harder is twofold. First, that features are irregularly spaced in the temporal domain according to an onset-based segmentation. Second the exact method used to compute these features is unknown, although the features for new audio can be computed using their API as a black-box. In this paper, we detail these difficulties and present a framework to nonetheless attempting such synthesis by concatenating audio samples from a training dataset, whose features have been computed beforehand. Samples are selected at the segment level, in the feature space with a simple nearest neighbor search. Additionnal constraints can then be defined to enhance the synthesis pertinence. Preliminary experiments are presented using RWC and GTZAN audio datasets to synthesize tracks from the Million Song Dataset.Comment: Technical Repor

    Computer Models for Musical Instrument Identification

    Get PDF
    PhDA particular aspect in the perception of sound is concerned with what is commonly termed as texture or timbre. From a perceptual perspective, timbre is what allows us to distinguish sounds that have similar pitch and loudness. Indeed most people are able to discern a piano tone from a violin tone or able to distinguish different voices or singers. This thesis deals with timbre modelling. Specifically, the formant theory of timbre is the main theme throughout. This theory states that acoustic musical instrument sounds can be characterised by their formant structures. Following this principle, the central point of our approach is to propose a computer implementation for building musical instrument identification and classification systems. Although the main thrust of this thesis is to propose a coherent and unified approach to the musical instrument identification problem, it is oriented towards the development of algorithms that can be used in Music Information Retrieval (MIR) frameworks. Drawing on research in speech processing, a complete supervised system taking into account both physical and perceptual aspects of timbre is described. The approach is composed of three distinct processing layers. Parametric models that allow us to represent signals through mid-level physical and perceptual representations are considered. Next, the use of the Line Spectrum Frequencies as spectral envelope and formant descriptors is emphasised. Finally, the use of generative and discriminative techniques for building instrument and database models is investigated. Our system is evaluated under realistic recording conditions using databases of isolated notes and melodic phrases
    corecore