5,269 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Malicious URL Website Detection using Selective Hyper Feature Link Stability based on Soft-Max Deep Featured Convolution Neural Network

    Get PDF
    The web resource contains many domains with different users' Uniform Resource Locators (URLs). Due to the increasing amount of information on the Internet resource, malicious activities are done by hackers by expecting malicious websites in URL sub-links. Increasing information theft leads data sources to be vested in huge mediums. So, to analyze the web features to find the malicious webpage based on the deep learning approach, we propose a Selective Hyper Feature Link stability rate (SHFLSR) based on Soft-max Deep featured convolution neural network (SmDFCNN) for identifying the malicious website detection depends on the actions performed and its feature responses. Initially, the URL Signature Frame rate (USFR) is estimated to verify the domain-specific hosting. Then the link stability was confirmed by post-response rate using HyperLink stability post-response state (LSPRS). Depending upon the Spectral successive Domain propagation rate (S2DPR), the features were selected and trained with a deep neural classifier with a logically defined Softmax- Logical activator (SmLA) using Deep featured Convolution neural network (DFCNN). The proposed system performs a high-performance rate by detecting the malicious URL based on the behavioral response of the domain. It increases the detection rate, prediction rate, and classifier performance

    Mass Removal of Botnet Attacks Using Heterogeneous Ensemble Stacking PROSIMA classifier in IoT

    Get PDF
    In an Internet of Things (IoT) environment, any object, which is equipped with sensor node and other electronic devices can involve in the communication over wireless network. Hence, this environment is highly vulnerable to Botnet attack. Botnet attack degrades the system performance in a manner difficult to get identified by the IoT network users. The Botnet attack is incredibly difficult to observe and take away in restricted time. there are challenges prevailed in the detection of Botnet attack due to number of reasons such as its unique structurally repetitive nature, performing non uniform and dissimilar activities and  invisible nature followed by deleting the record of history. Even though existing mechanisms have taken action against the Botnet attack proactively, it has been observed failing to capture the frequent abnormal activities of Botnet attackers .When number of devices in the IoT environment increases, the existing mechanisms have missed more number of Botnet due to its functional complexity. So this type of attack is very complex in nature and difficult to identify. In order to detect Botnet attack, Heterogeneous Ensemble Stacking PROSIMA classifier is proposed. This takes advantage of cluster sampling in place of conventional random sampling for higher accuracy of prediction. The proposed classifier is tested on an experimental test setup with 20 nodes. The proposed approach enables mass removal of Botnet attack detection with higher accuracy that helps in the IoT environment to maintain the reliability of the entire network
    • …
    corecore