132 research outputs found

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.

    The Microsoft 2016 Conversational Speech Recognition System

    Full text link
    We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. The best single system uses a ResNet architecture acoustic model with RNNLM rescoring, and achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The combined system has an error rate of 6.2%, representing an improvement over previously reported results on this benchmark task

    Low latency modeling of temporal contexts for speech recognition

    Get PDF
    This thesis focuses on the development of neural network acoustic models for large vocabulary continuous speech recognition (LVCSR) to satisfy the design goals of low latency and low computational complexity. Low latency enables online speech recognition; and low computational complexity helps reduce the computational cost both during training and inference. Long span sequential dependencies and sequential distortions in the input vector sequence are a major challenge in acoustic modeling. Recurrent neural networks have been shown to effectively model these dependencies. Specifically, bidirectional long short term memory (BLSTM) networks, provide state-of-the-art performance across several LVCSR tasks. However the deployment of bidirectional models for online LVCSR is non-trivial due to their large latency; and unidirectional LSTM models are typically preferred. In this thesis we explore the use of hierarchical temporal convolution to model long span temporal dependencies. We propose a sub-sampled variant of these temporal convolution neural networks, termed time-delay neural networks (TDNNs). These sub-sampled TDNNs reduce the computation complexity by ~5x, compared to TDNNs, during frame randomized pre-training. These models are shown to be effective in modeling long-span temporal contexts, however there is a performance gap compared to (B)LSTMs. As recent advancements in acoustic model training have eliminated the need for frame randomized pre-training we modify the TDNN architecture to use higher sampling rates, as the increased computation can be amortized over the sequence. These variants of sub- sampled TDNNs provide performance superior to unidirectional LSTM networks, while also affording a lower real time factor (RTF) during inference. However we show that the BLSTM models outperform both the TDNN and LSTM models. We propose a hybrid architecture interleaving temporal convolution and LSTM layers which is shown to outperform the BLSTM models. Further we improve these BLSTM models by using higher frame rates at lower layers and show that the proposed TDNN- LSTM model performs similar to these superior BLSTM models, while reducing the overall latency to 200 ms. Finally we describe an online system for reverberation robust ASR, using the above described models in conjunction with other data augmentation techniques like reverberation simulation, which simulates far-field environments, and volume perturbation, which helps tackle volume variation even without gain normalization

    Large-margin Gaussian mixture modeling for automatic speech recognition

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 101-103).Discriminative training for acoustic models has been widely studied to improve the performance of automatic speech recognition systems. To enhance the generalization ability of discriminatively trained models, a large-margin training framework has recently been proposed. This work investigates large-margin training in detail, integrates the training with more flexible classifier structures such as hierarchical classifiers and committee-based classifiers, and compares the performance of the proposed modeling scheme with existing discriminative methods such as minimum classification error (MCE) training. Experiments are performed on a standard phonetic classification task and a large vocabulary speech recognition (LVCSR) task. In the phonetic classification experiments, the proposed modeling scheme yields about 1.5% absolute error reduction over the current state of the art. In the LVCSR experiments on the MIT lecture corpus, the large-margin model has about 6.0% absolute word error rate reduction over the baseline model and about 0.6% absolute error rate reduction over the MCE model.by Hung-An Chang.S.M

    An exploration of large vocabulary tools for small vocabulary phonetic recognition

    Get PDF
    Abstract-While research in large vocabulary continuous speech recognition (LVCSR) has sparked the development of many state of the art research ideas, research in this domain suffers from two main drawbacks. First, because of the large number of parameters and poorly labeled transcriptions, gaining insight into further improvements based on error analysis is very difficult. Second, LVCSR systems often take a significantly longer time to train and test new research ideas compared to small vocabulary tasks. A small vocabulary task like TIMIT provides a phonetically rich and hand-labeled corpus and offers a good test bed to study algorithmic improvements. However, oftentimes research ideas explored for small vocabulary tasks do not always provide gains on LVCSR systems. In this paper, we address these issues by taking the standard "recipe" used in typical LVCSR systems and applying it to the TIMIT phonetic recognition corpus, which provides a standard benchmark to compare methods. We find that at the speaker-independent (SI) level, our results offer comparable performance to other SI HMM systems. By taking advantage of speaker adaptation and discriminative training techniques commonly used in LVCSR systems, we achieve an error rate of 20%, the best results reported on the TIMIT task to date, moving us closer to the human reported phonetic recognition error rate of 15%. We propose the use of this system as the baseline for future research and believe that it will serve as a good framework to explore ideas that will carry over to LVCSR systems

    Discriminative and adaptive training for robust speech recognition and understanding

    Get PDF
    Robust automatic speech recognition (ASR) and understanding (ASU) under various conditions remains to be a challenging problem even with the advances of deep learning. To achieve robust ASU, two discriminative training objectives are proposed for keyword spotting and topic classification: (1) To accurately recognize the semantically important keywords, the non-uniform error cost minimum classification error training of deep neural network (DNN) and bi-directional long short-term memory (BLSTM) acoustic models is proposed to minimize the recognition errors of only the keywords. (2) To compensate for the mismatched objectives of speech recognition and understanding, minimum semantic error cost training of the BLSTM acoustic model is proposed to generate semantically accurate lattices for topic classification. Further, to expand the application of the ASU system to various conditions, four adaptive training approaches are proposed to improve the robustness of the ASR under different conditions: (1) To suppress the effect of inter-speaker variability on speaker-independent DNN acoustic model, speaker-invariant training is proposed to learn a deep representation in the DNN that is both senone-discriminative and speaker-invariant through adversarial multi-task training (2) To achieve condition-robust unsupervised adaptation with parallel data, adversarial teacher-student learning is proposed to suppress multiple factors of condition variability in the procedure of knowledge transfer from a well-trained source domain LSTM acoustic model to the target domain. (3) To further improve the adversarial learning for unsupervised adaptation with unparallel data, domain separation networks are used to enhance the domain-invariance of the senone-discriminative deep representation by explicitly modeling the private component that is unique to each domain. (4) To achieve robust far-field ASR, an LSTM adaptive beamforming network is proposed to estimate the real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions.Ph.D
    corecore