246 research outputs found

    Visual units and confusion modelling for automatic lip-reading

    Get PDF
    Automatic lip-reading (ALR) is a challenging task because the visual speech signal is known to be missing some important information, such as voicing. We propose an approach to ALR that acknowledges that this information is missing but assumes that it is substituted or deleted in a systematic way that can be modelled. We describe a system that learns such a model and then incorporates it into decoding, which is realised as a cascade of weighted finite-state transducers. Our results show a small but statistically significant improvement in recognition accuracy. We also investigate the issue of suitable visual units for ALR, and show that visemes are sub-optimal, not but because they introduce lexical ambiguity, but because the reduction in modelling units entailed by their use reduces accuracy

    A new visual speech modelling approach for visual speech recognition

    Get PDF
    In this paper we propose a new learning-based representation that is referred to as Visual Speech Unit (VSU) for visual speech recognition (VSR). The new Visual Speech Unit concept proposes an extension of the standard viseme model that is currently applied for VSR by including in this representation not only the data associated with the visemes, but also the transitory information between consecutive visemes. The developed speech recognition system consists of several computational stages: (a) lips segmentation, (b) construction of the Expectation-Maximization Principal Component Analysis (EM-PCA) manifolds from the input video image, (c) registration between the models of the VSUs and the EM-PCA data constructed from the input image sequence and (d) recognition of the VSUs using a standard Hidden Markov Model (HMM) classification scheme. In this paper we were particularly interested to evaluate the classification accuracy obtained for our new VSU models when compared with that attained for standard (MPEG-4) viseme models. The experimental results indicate that we achieved 90% recognition rate when the system has been applied to the identification of 60 classes of VSUs, while the recognition rate for the standard set of MPEG-4 visemes was only 52%

    Text-based Editing of Talking-head Video

    No full text
    Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker has been modified, while maintaining a seamless audio-visual flow (i.e. no jump cuts). Our method automatically annotates an input talking-head video with phonemes, visemes, 3D face pose and geometry, reflectance, expression and scene illumination per frame. To edit a video, the user has to only edit the transcript, and an optimization strategy then chooses segments of the input corpus as base material. The annotated parameters corresponding to the selected segments are seamlessly stitched together and used to produce an intermediate video representation in which the lower half of the face is rendered with a parametric face model. Finally, a recurrent video generation network transforms this representation to a photorealistic video that matches the edited transcript. We demonstrate a large variety of edits, such as the addition, removal, and alteration of words, as well as convincing language translation and full sentence synthesis

    Automatic Visual Speech Recognition

    Get PDF
    Intelligent SystemsElectrical Engineering, Mathematics and Computer Scienc

    Visual speech synthesis using dynamic visemes, contextual features and DNNs

    Get PDF
    This paper examines methods to improve visual speech synthesis from a text input using a deep neural network (DNN). Two representations of the input text are considered, namely into phoneme sequences or dynamic viseme sequences. From these sequences, contextual features are extracted that include information at varying linguistic levels, from frame level down to the utterance level. These are extracted from a broad sliding window that captures context and produces features that are input into the DNN to estimate visual features. Experiments first compare the accuracy of these visual features against an HMM baseline method which establishes that both the phoneme and dynamic viseme systems perform better with best performance obtained by a combined phoneme-dynamic viseme system. An investigation into the features then reveals the importance of the frame level information which is able to avoid discontinuities in the visual feature sequence and produces a smooth and realistic output
    corecore