3,961 research outputs found

    Frame Packing Algorithms for Automotive Applications

    Get PDF
    The set of frames exchanged in an in-vehicle applications must meet two constraints: it has to be feasible from a schedulability point of view and it should minimize the network bandwidth consumption. This latter point is important since it allows the use of low cost electronic components and it facilitates an incremental design process. The purpose of this study is to propose efficient algorithms for solving the NP-hard problem of generating a set of schedulable frames that minimizes the bandwidth usage. This study presents two algorithms: one for building the set of frames while the other aims at finding a feasible set of frames starting from an unfeasible one. On our experiments, these proposals have proved to be more effective than the existing approaches

    Frame packing algorithms for automotive applications

    Get PDF
    International audienceThe set of frames exchanged in automotive applications must meet two constraints: it has to be feasible from a schedulability point of view and it should minimize the network bandwidth consumption. This latter point is important since it allows the use of low cost electronic components and it facilitates an incremental design process. The purpose of this study is to propose efficient algorithms for solving the NP-hard problem of generating a set of schedulable frames that minimize the bandwidth usage. This study presents novel algorithms for building bandwidth-minimizing sets of frames that meet the schedulability requirement. In our experiments, these proposals have proved to be more effective than the existing approaches

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems

    Get PDF
    We present an approach to frame packing for multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In our approach, the application messages are packed into frames such that the application is schedulable. Thus, we have also proposed a schedulability analysis for applications consisting of mixed event-triggered and time-triggered processes and messages, and a worst case queuing delay analysis for the gateways, responsible for routing inter-cluster traffic. Optimization heuristics for frame packing aiming at producing a schedulable system have been proposed. Extensive experiments and a real-life example show the efficiency of our frame-packing approach

    Performance evaluation over HW/SW co-design SoC memory transfers for a CNN accelerator

    Get PDF
    Many FPGAs vendors have recently included embedded processors in their devices, like Xilinx with ARM-Cortex A cores, together with programmable logic cells. These devices are known as Programmable System on Chip (PSoC). Their ARM cores (embedded in the processing system or PS) communicates with the programmable logic cells (PL) using ARM-standard AXI buses. In this paper we analyses the performance of exhaustive data transfers between PS and PL for a Xilinx Zynq FPGA in a co-design real scenario for Convolutional Neural Networks (CNN) accelerator, which processes, in dedicated hardware, a stream of visual information from a neuromorphic visual sensor for classification. In the PS side, a Linux operating system is running, which recollects visual events from the neuromorphic sensor into a normalized frame, and then it transfers these frames to the accelerator of multi-layered CNNs, and read results, using an AXI-DMA bus in a per-layer way. As these kind of accelerators try to process information as quick as possible, data bandwidth becomes critical and maintaining a good balanced data throughput rate requires some considerations. We present and evaluate several data partitioning techniques to improve the balance between RX and TX transfer and two different ways of transfers management: through a polling routine at the userlevel of the OS, and through a dedicated interrupt-based kernellevel driver. We demonstrate that for longer enough packets, the kernel-level driver solution gets better timing in computing a CNN classification example. Main advantage of using kernel-level driver is to have safer solutions and to have tasks scheduling in the OS to manage other important processes for our application, like frames collection from sensors and their normalization.Ministerio de Economía y Competitividad TEC2016-77785-

    In-vehicle communication networks : a literature survey

    Get PDF
    The increasing use of electronic systems in automobiles instead of mechanical and hydraulic parts brings about advantages by decreasing their weight and cost and providing more safety and comfort. There are many electronic systems in modern automobiles like antilock braking system (ABS) and electronic brakeforce distribution (EBD), electronic stability program (ESP) and adaptive cruise control (ACC). Such systems assist the driver by providing better control, more comfort and safety. In addition, future x-by-wire applications aim to replace existing braking, steering and driving systems. The developments in automotive electronics reveal the need for dependable, efficient, high-speed and low cost in-vehicle communication. This report presents the summary of a literature survey on in-vehicle communication networks. Different in-vehicle system domains and their requirements are described and main invehicle communication networks that have been used in automobiles or are likely to be used in the near future are discussed and compared with key references

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF
    corecore