70 research outputs found

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestĂŒtzten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal fĂŒr fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestĂŒtzten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollstĂ€ndige volumetrische Information einer Szene. Diese Technologie bietet dabei das grĂ¶ĂŸte Potenzial, immersive Erlebnisse zu mehr RealitĂ€tsnĂ€he zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der InkompatibilitĂ€t derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen fĂŒr 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die KompatibilitĂ€t zwischen Anwendungen und GerĂ€ten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken fĂŒr eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollstĂ€ndige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen AnsĂ€tze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Speeding up VP9 Intra Encoder with Hierarchical Deep Learning Based Partition Prediction

    Full text link
    In VP9 video codec, the sizes of blocks are decided during encoding by recursively partitioning 64×\times64 superblocks using rate-distortion optimization (RDO). This process is computationally intensive because of the combinatorial search space of possible partitions of a superblock. Here, we propose a deep learning based alternative framework to predict the intra-mode superblock partitions in the form of a four-level partition tree, using a hierarchical fully convolutional network (H-FCN). We created a large database of VP9 superblocks and the corresponding partitions to train an H-FCN model, which was subsequently integrated with the VP9 encoder to reduce the intra-mode encoding time. The experimental results establish that our approach speeds up intra-mode encoding by 69.7% on average, at the expense of a 1.71% increase in the Bjontegaard-Delta bitrate (BD-rate). While VP9 provides several built-in speed levels which are designed to provide faster encoding at the expense of decreased rate-distortion performance, we find that our model is able to outperform the fastest recommended speed level of the reference VP9 encoder for the good quality intra encoding configuration, in terms of both speedup and BD-rate

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Bitstream-based video quality modeling and analysis of HTTP-based adaptive streaming

    Get PDF
    Die Verbreitung erschwinglicher Videoaufnahmetechnologie und verbesserte Internetbandbreiten ermöglichen das Streaming von hochwertigen Videos (Auflösungen > 1080p, Bildwiederholraten ≄ 60fps) online. HTTP-basiertes adaptives Streaming ist die bevorzugte Methode zum Streamen von Videos, bei der Videoparameter an die verfĂŒgbare Bandbreite angepasst wird, was sich auf die VideoqualitĂ€t auswirkt. Adaptives Streaming reduziert Videowiedergabeunterbrechnungen aufgrund geringer Netzwerkbandbreite, wirken sich jedoch auf die wahrgenommene QualitĂ€t aus, weswegen eine systematische Bewertung dieser notwendig ist. Diese Bewertung erfolgt ĂŒblicherweise fĂŒr kurze Abschnitte von wenige Sekunden und wĂ€hrend einer Sitzung (bis zu mehreren Minuten). Diese Arbeit untersucht beide Aspekte mithilfe perzeptiver und instrumenteller Methoden. Die perzeptive Bewertung der kurzfristigen VideoqualitĂ€t umfasst eine Reihe von Labortests, die in frei verfĂŒgbaren DatensĂ€tzen publiziert wurden. Die QualitĂ€t von lĂ€ngeren Sitzungen wurde in Labortests mit menschlichen Betrachtern bewertet, die reale Betrachtungsszenarien simulieren. Die Methodik wurde zusĂ€tzlich außerhalb des Labors fĂŒr die Bewertung der kurzfristigen VideoqualitĂ€t und der GesamtqualitĂ€t untersucht, um alternative AnsĂ€tze fĂŒr die perzeptive QualitĂ€tsbewertung zu erforschen. Die instrumentelle QualitĂ€tsevaluierung wurde anhand von bitstrom- und hybriden pixelbasierten VideoqualitĂ€tsmodellen durchgefĂŒhrt, die im Zuge dieser Arbeit entwickelt wurden. Dazu wurde die Modellreihe AVQBits entwickelt, die auf den Labortestergebnissen basieren. Es wurden vier verschiedene Modellvarianten von AVQBits mit verschiedenen Inputinformationen erstellt: Mode 3, Mode 1, Mode 0 und Hybrid Mode 0. Die Modellvarianten wurden untersucht und schneiden besser oder gleichwertig zu anderen aktuellen Modellen ab. Diese Modelle wurden auch auf 360°- und Gaming-Videos, HFR-Inhalte und Bilder angewendet. DarĂŒber hinaus wird ein Langzeitintegrationsmodell (1 - 5 Minuten) auf der Grundlage des ITU-T-P.1203.3-Modells prĂ€sentiert, das die verschiedenen Varianten von AVQBits mit sekĂŒndigen QualitĂ€tswerten als VideoqualitĂ€tskomponente des vorgeschlagenen Langzeitintegrationsmodells verwendet. Alle AVQBits-Varianten, das Langzeitintegrationsmodul und die perzeptiven Testdaten wurden frei zugĂ€nglich gemacht, um weitere Forschung zu ermöglichen.The pervasion of affordable capture technology and increased internet bandwidth allows high-quality videos (resolutions > 1080p, framerates ≄ 60fps) to be streamed online. HTTP-based adaptive streaming is the preferred method for streaming videos, adjusting video quality based on available bandwidth. Although adaptive streaming reduces the occurrences of video playout being stopped (called “stalling”) due to narrow network bandwidth, the automatic adaptation has an impact on the quality perceived by the user, which results in the need to systematically assess the perceived quality. Such an evaluation is usually done on a short-term (few seconds) and overall session basis (up to several minutes). In this thesis, both these aspects are assessed using subjective and instrumental methods. The subjective assessment of short-term video quality consists of a series of lab-based video quality tests that have resulted in publicly available datasets. The overall integral quality was subjectively assessed in lab tests with human viewers mimicking a real-life viewing scenario. In addition to the lab tests, the out-of-the-lab test method was investigated for both short-term video quality and overall session quality assessment to explore the possibility of alternative approaches for subjective quality assessment. The instrumental method of quality evaluation was addressed in terms of bitstream- and hybrid pixel-based video quality models developed as part of this thesis. For this, a family of models, namely AVQBits has been conceived using the results of the lab tests as ground truth. Based on the available input information, four different instances of AVQBits, that is, a Mode 3, a Mode 1, a Mode 0, and a Hybrid Mode 0 model are presented. The model instances have been evaluated and they perform better or on par with other state-of-the-art models. These models have further been applied to 360° and gaming videos, HFR content, and images. Also, a long-term integration (1 - 5 mins) model based on the ITU-T P.1203.3 model is presented. In this work, the different instances of AVQBits with the per-1-sec scores output are employed as the video quality component of the proposed long-term integration model. All AVQBits variants as well as the long-term integration module and the subjective test data are made publicly available for further research

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Recent Advances in Region-of-interest Video Coding

    Get PDF
    • 

    corecore