27 research outputs found

    BEst (Biomarker Estimation): Health Biomarker Estimation Non-invasively and Ubiquitously

    Get PDF
    This dissertation focuses on the non-invasive assessment of blood-hemoglobin levels. The primary goal of this research is to investigate a reliable, affordable, and user-friendly point-of-care solution for hemoglobin-level determination using fingertip videos captured by a smartphone. I evaluated videos obtained from five patient groups, three from the United States and two from Bangladesh, under two sets of lighting conditions. In the last group, based on human tissue optical transmission modeling data, I used near-infrared light-emitting diode sources of three wavelengths. I developed novel image processing techniques for fingertip video analysis to estimate hemoglobin levels. I studied video images creating image histogram and subdividing each image into multiple blocks. I determined the region of interest in a video and created photoplethysmogram signals. I created features from image histograms and PPG signals. I used the Partial Least Squares Regression and Support Vector Machine Regression tools to analyze input features and to build hemoglobin prediction models. Using data from the last and largest group of patients studied, I was able to develop a model with a strong linear correlation between estimated and clinically-measured hemoglobin levels. With further data and methodological refinements, the approach I have developed may be able to define a clinically accurate public health applicable tool for hemoglobin level and other blood constituent assessment

    Investigation of Five Algorithms for Selection of the Optimal Region of Interest in Smartphone Photoplethysmography

    Get PDF
    Smartphone photoplethysmography is a newly developed technique that can detect several physiological parameters from the photoplethysmographic signal obtained by the built-in camera of a smartphone. It is simple, low-cost, and easy-to-use, with a great potential to be used in remote medicine and home healthcare service. However, the determination of the optimal region of interest (ROI), which is an important issue for extracting photoplethysmographic signals from the camera video, has not been well studied. We herein proposed five algorithms for ROI selection: variance (VAR), spectral energy ratio (SER), template matching (TM), temporal difference (TD), and gradient (GRAD). Their performances were evaluated by a 50-subject experiment comparing the heart rates measured from the electrocardiogram and those from the smartphone using the five algorithms. The results revealed that the TM and the TD algorithms outperformed the other three as they had less standard error of estimate (<1.5 bpm) and smaller limits of agreement (<3 bpm). The TD algorithm was slightly better than the TM algorithm and more suitable for smartphone applications. These results may be helpful to improve the accuracy of the physiological parameters measurement and to make the smartphone photoplethysmography technique more practical

    Camera-Based Heart Rate Extraction in Noisy Environments

    Get PDF
    Remote photoplethysmography (rPPG) is a non-invasive technique that benefits from video to measure vital signs such as the heart rate (HR). In rPPG estimation, noise can introduce artifacts that distort rPPG signal and jeopardize accurate HR measurement. Considering that most rPPG studies occurred in lab-controlled environments, the issue of noise in realistic conditions remains open. This thesis aims to examine the challenges of noise in rPPG estimation in realistic scenarios, specifically investigating the effect of noise arising from illumination variation and motion artifacts on the predicted rPPG HR. To mitigate the impact of noise, a modular rPPG measurement framework, comprising data preprocessing, region of interest, signal extraction, preparation, processing, and HR extraction is developed. The proposed pipeline is tested on the LGI-PPGI-Face-Video-Database public dataset, hosting four different candidates and real-life scenarios. In the RoI module, raw rPPG signals were extracted from the dataset using three machine learning-based face detectors, namely Haarcascade, Dlib, and MediaPipe, in parallel. Subsequently, the collected signals underwent preprocessing, independent component analysis, denoising, and frequency domain conversion for peak detection. Overall, the Dlib face detector leads to the most successful HR for the majority of scenarios. In 50% of all scenarios and candidates, the average predicted HR for Dlib is either in line or very close to the average reference HR. The extracted HRs from the Haarcascade and MediaPipe architectures make up 31.25% and 18.75% of plausible results, respectively. The analysis highlighted the importance of fixated facial landmarks in collecting quality raw data and reducing noise

    Quantitative Multidimensional Stress Assessment from Facial Videos

    Get PDF
    Stress has a significant impact on the physical and mental health of an individual and is a growing concern for society, especially during the COVID-19 pandemic. Facial video-based stress evaluation from non-invasive cameras has proven to be a significantly more efficient method to evaluate stress in comparison to approaches that use questionnaires or wearable sensors. Plenty of classification models have been built for stress detection. However, most do not consider individual differences. Also, the results for such models are limited by a uni-dimensional definition of stress levels lacking a comprehensive quantitative definition of stress. The dissertation focuses on building a framework that utilizes the multilevel video frame representations from deep learning and the remote photoplethysmography signals extracted from the facial videos for stress assessment. The fusion model takes the inputs of a baseline video and a target video of the subject. The physiological features such as heart rate and heart rate variability are used with the initial stress scores generated from deep learning are used to predict the stress scores in cognitive anxiety, somatic anxiety, and self-confidence. To generate stress scores with better accuracy, the signal extraction method is improved by introducing the CWT-SNR method that uses the signal-to-noise ratio to assist the adaptive bandpass filtering in the post-processing of the signals. A study on phase space reconstruction features is performed and the results show the potential for additional accuracy improvement for the heart rate variability detection. To select the best deep learning architecture, multiple deep learning architectures are tested to build the deep learning model. Support Vector Regression is used to generate the output stress score results. Testing with the data from the UBFC-Phys dataset, the fusion model shows a strong correlation between ground truth and the predicted results

    Remote Assessment of the Cardiovascular Function Using Camera-Based Photoplethysmography

    Get PDF
    Camera-based photoplethysmography (cbPPG) is a novel measurement technique that allows the continuous monitoring of vital signs by using common video cameras. In the last decade, the technology has attracted a lot of attention as it is easy to set up, operates remotely, and offers new diagnostic opportunities. Despite the growing interest, cbPPG is not completely established yet and is still primarily the object of research. There are a variety of reasons for this lack of development including that reliable and autonomous hardware setups are missing, that robust processing algorithms are needed, that application fields are still limited, and that it is not completely understood which physiological factors impact the captured signal. In this thesis, these issues will be addressed. A new and innovative measuring system for cbPPG was developed. In the course of three large studies conducted in clinical and non-clinical environments, the system’s great flexibility, autonomy, user-friendliness, and integrability could be successfully proven. Furthermore, it was investigated what value optical polarization filtration adds to cbPPG. The results show that a perpendicular filter setting can significantly enhance the signal quality. In addition, the performed analyses were used to draw conclusions about the origin of cbPPG signals: Blood volume changes are most likely the defining element for the signal's modulation. Besides the hardware-related topics, the software topic was addressed. A new method for the selection of regions of interest (ROIs) in cbPPG videos was developed. Choosing valid ROIs is one of the most important steps in the processing chain of cbPPG software. The new method has the advantage of being fully automated, more independent, and universally applicable. Moreover, it suppresses ballistocardiographic artifacts by utilizing a level-set-based approach. The suitability of the ROI selection method was demonstrated on a large and challenging data set. In the last part of the work, a potentially new application field for cbPPG was explored. It was investigated how cbPPG can be used to assess autonomic reactions of the nervous system at the cutaneous vasculature. The results show that changes in the vasomotor tone, i.e. vasodilation and vasoconstriction, reflect in the pulsation strength of cbPPG signals. These characteristics also shed more light on the origin problem. Similar to the polarization analyses, they support the classic blood volume theory. In conclusion, this thesis tackles relevant issues regarding the application of cbPPG. The proposed solutions pave the way for cbPPG to become an established and widely accepted technology

    Scalable Teaching and Learning via Intelligent User Interfaces

    Get PDF
    The increasing demand for higher education and the educational budget cuts lead to large class sizes. Learning at scale is also the norm in Massive Open Online Courses (MOOCs). While it seems cost-effective, the massive scale of class challenges the adoption of proven pedagogical approaches and practices that work well in small classes, especially those that emphasize interactivity, active learning, and personalized learning. As a result, the standard teaching approach in today’s large classes is still lectured-based and teacher-centric, with limited active learning activities, and with relatively low teaching and learning effectiveness. This dissertation explores the usage of Intelligent User Interfaces (IUIs) to facilitate the efficient and effective adoption of the tried-and-true pedagogies at scale. The first system is MindMiner, an instructor-side data exploration and visualization system for peer review understanding. MindMiner helps instructors externalize and quantify their subjective domain knowledge, interactively make sense of student peer review data, and improve data exploration efficiency via distance metric learning. MindMiner also helps instructors generate customized feedback to students at scale. We then present BayesHeart, a probabilistic approach for implicit heart rate monitoring on smartphones. When integrated with MOOC mobile clients, BayesHeart can capture learners’ heart rates implicitly when they watch videos. Such information is the foundation of learner attention/affect modeling, which enables a ‘sensorless’ and scalable feedback channel from students to instructors. We then present CourseMIRROR, an intelligent mobile system integrated with Natural Language Processing (NLP) techniques that enables scalable reflection prompts in large classrooms. CourseMIRROR 1) automatically reminds and collects students’ in-situ written reflections after each lecture; 2) continuously monitors the quality of a student’s reflection at composition time and generates helpful feedback to scaffold reflection writing; 3) summarizes the reflections and presents the most significant ones to both instructors and students. Last, we present ToneWars, an educational game connecting Chinese as a Second Language (CSL) learners with native speakers via collaborative mobile gameplay. We present a scalable approach to enable authentic competition and skill comparison with native speakers by modeling their interaction patterns and language skills asynchronously. We also prove the effectiveness of such modeling in a longitudinal study

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    State of the Art of Audio- and Video-Based Solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters. Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals. Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely lifelogging and self-monitoring, remote monitoring of vital signs, emotional state recognition, food intake monitoring, activity and behaviour recognition, activity and personal assistance, gesture recognition, fall detection and prevention, mobility assessment and frailty recognition, and cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed

    Mobile Thermography-based Physiological Computing for Automatic Recognition of a Person’s Mental Stress

    Get PDF
    This thesis explores the use of Mobile Thermography1, a significantly less investigated sensing capability, with the aim of reliably extracting a person’s multiple physiological signatures and recognising mental stress in an automatic, contactless manner. Mobile thermography has greater potentials for real-world applications because of its light-weight, low computation-cost characteristics. In addition, thermography itself does not necessarily require the sensors to be worn directly on the skin. It raises less privacy concerns and is less sensitive to ambient lighting conditions. The work presented in this thesis is structured through a three-stage approach that aims to address the following challenges: i) thermal image processing for mobile thermography in variable thermal range scenes; ii) creation of rich and robust physiology measurements; and iii) automated stress recognition based on such measurements. Through the first stage (Chapter 4), this thesis contributes new processing techniques to address negative effects of environmental temperature changes upon automatic tracking of regions-of-interest and measuring of surface temperature patterns. In the second stage (Chapters 5,6,7), the main contributions are: robustness in tracking respiratory and cardiovascular thermal signatures both in constrained and unconstrained settings (e.g. respiration: strong correlation with ground truth, r=0.9987), and investigation of novel cortical thermal signatures associated with mental stress. The final stage (Chapters 8,9) contributes automatic stress inference systems that focus on capturing richer dynamic information of physiological variability: firstly, a novel respiration representation-based system (which has achieved state-of-the-art performance: 84.59% accuracy, two stress levels), and secondly, a novel cardiovascular representation-based system using short-term measurements of nasal thermal variability and heartrate variability from another sensing channel (78.33% accuracy achieved from 20seconds measurements). Finally, this thesis contributes software libraries and incrementally built labelled datasets of thermal images in both constrained and everyday ubiquitous settings. These are used to evaluate performance of our proposed computational methods across the three-stages
    corecore