2,285 research outputs found

    Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    Full text link
    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that might benefit from wireless techniques. The objective is to provide a common platform for research and development in order to optimize effectiveness and cost, with the aim of designing and testing wireless demonstrators for large instrumentation systems

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    mmWave RX interference test considerations and challenges in OTA environment

    Get PDF
    Abstract. Verifying equipment using the OTA (Over the Air) techniques is a recent addition in telecommunication testing. With the addition of new frequency bands, mmWave (millimetre wave) technology and massive MIMO (Multiple-Input-Multiple-Output), the 3GPP (3rd Generation Partnership Programme) has cemented OTA testing as the focus for verifying future equipment. However, these verifying methods are still in development, or stated as general ideas of how they are meant to be done. The main goal of this thesis is to study and design a system for receiver radio testing, according to 3GPP specifications. The test system must operate in mmWave frequency range and must be integrated to a pre-built antenna testing environment. The motivation is to verify the testing method proposed by 3GPP for mmWave receiver testing and analyse it thoroughly. This thesis aims to answer such research questions as: Is the testing method proposed by 3GPP valid for verifying mmWave frequency products? What are the major challenges, when designing test setup for high frequency devices? How can the method be improved and how it can be applied in the future? This thesis answers the first question by applying the proposed test methods in practical scenario and testing an actual eNB/gNB (eNodeB / Next generation eNodeB). Since the proposed test method has only general outline of what equipment to use, the actual test scenario will have additional pieces of testing equipment. For the second question, this thesis discusses the theory behind 5G and mmWave challenges, and how the use of these techniques is justified for practical usage. This theory is based on former research as well as current specifications applied by the 3GPP. The third research question is part of the final analysis, where the test results are analysed, and the major parts are discussed in depth. These discussions are then further expanded on with the purpose of suggesting possible areas of improvement as well as how to apply these findings into future use. The final outcome of the study is that the suggested test method is workings as it was presented by the 3GPP. However, there are some areas of improvement that should be discussed as a future work.Millimetriaaltojen RX interferenssi RF-testit OTA-ympäristössä. Tiivistelmä. Tuotteiden testaaminen ilmateitse on melko uusi lisäys tietoliikennetestauksen tekniikoihin, joita käytetään tuotteiden varmentamiseen. 3GPP on osoittanut OTA-testauksen keskeiseksi osaksi tulevien tuotteiden verifiointia. Osaksi tämä johtuu uusien taajuuskanavien käyttöönotosta, millimetriaaltoteknologiasta sekä massive MIMO tuotteiden yleistymisestä. Vaikka testaustapoja on jo ehdotettu, ne ovat vielä mahdollisesti vain yleisiä ideoita kuinka testejä tulisi suorittaa. Työn tarkoituksena on tutkia ja suunnitella vastaanottimen testaamiseen tehty testijärjestely. Testijärjestelyn tulee toimia millimetriaalloille tarkoitetulla taajuusalueella, ja työ tulee integroida valmiiksi suunniteltuun CATR-antennikammioon. Työn motivaationa on verifioida 3GPP:n ehdottama testausmetodi, millimetriaaltotaajuuksilla toimivien vastaanottimien toimivuus ja analysoida tämä tarkemmin. Tämä työ pyrkii vastaamaan tutkimuskysymyksiin kuten: Onko 3GPP:n ehdottama testimetodi pätevä verifioimaan millimetriaaltotaajuuksilla toimivia tuotteita? Mitä ovat suurimmat haasteet, kun suunnitellaan testijärjestelyä korkeataajuuksisille laitteille? Kuinka tätä metodia voidaan parantaa, ja kuinka sitä voidaan hyödyntää tulevaisuudessa? Työ vastaa ensimmäiseen tutkimuskysymykseen ottamalla käyttöön 3GPP:n ehdottamat testausmetodit käytännön testijärjestelyssä, ja testaamalla näillä metodeilla oikean tuotteen. Tällä tavoin ehdotettu testausmetodi pyritään verifioimaan. Tulee kuitenkin ottaa huomion, että ehdotetussa metodissa esitetään vain yleisellä tasolla mitä testaamiseen käytettävää laitteistoa käytetään. Tämän takia testeissä tulee olemaan joitain lisälaitteita, jotka ovat kuitenkin osa kokonaista testiympäristöä. Toiseen tutkimuskysymykseen perehdytään käymällä läpi teoriaa 5G:n ja millimetriaaltoteknologian haasteista, ja kuinka näitä tekniikoita tullaan hyödyntämään tulevaisuudessa. Teoria perustuu aiempaan tutkimukseen, sekä nykyisiin spesifikaatioihin jota 3GPP on kehittänyt. Kolmas tutkimuskysymys on osa lopullista analyysiä, jossa testien tulokset analysoidaan ja niiden pääkohdista keskustellaan tarkemmin. Tämän jälkeen keskusteluja täsmennetään liittyen mahdollisiin parannuksiin tietyllä aihealueilla, sekä mahdollisuuksista käyttää kyseisiä tuloksia tulevaisuudessa. Lopullinen päätelmä on, että ehdotettu testausmetodi toimii kuten se oli esitetty 3GPP:n dokumentoinnissa. On kuitenkin joitain osa-alueita, joita voitaisiin käsitellä tarkemmin tai jopa parantaa tulevaisuutta varten

    Optimization of Spectrum Management in Massive Array Antenna Systems with MIMO

    Get PDF
    Fifth generation (5G), is being considered as a revolutionary technology in the telecommunication domain whose the challenges are mainly to achieve signal quality and great ability to work with free spectrum in the millimetre waves. Besides, other important innovations are the introduction of a more current architecture and the use of multiple antennas in transmission and reception. Digital communication using multiple input and multiple output (MIMO) wireless links has recently emerged as one of the most significant technical advances in modern communications. MIMO technology is able to offer a large increase in the capacity of these systems, without requiring a considerable increase in bandwidth or power required for transmission. This dissertation presents an overview of theoretical concepts of MIMO systems. With such a system a spatial diversity gain can be obtained by using space-time codes, which simultaneously exploit the spatial domain and the time domain. SISO, SIMO and MISO systems are differentiated by their channel capacity and their configuration in relation to the number of antennas in the transmitter/receiver. To verify the effectiveness of the MIMO systems a comparison between the capacity of SISO and MIMO systems has been performed using the Shannon’s principles. In the MIMO system some variations in the number of antennas arrays have been considered, and the superiority of transmission gains of the MIMO systems have been demonstrated. Combined with millimetre waves (mmWaves) technology, massive MIMO systems, where the number of antennas in the base station and the number of users are large, is a promising solution. SDR implementations have been performed considering a platform with Matlab code applied to MIMO 2x2 Radio and Universal Software Peripheral Radio (USRP). A detailed study was initially conducted to analyze the architecture of the USRP. Complex structures of MIMO systems can be simplified by using mathematical methods implemented in Matlab for the synchronization of the USRP in the receiver side. SISO transmission and reception techniques have been considered to refine the synchronization (with 16-QAM), thus facilitating the future implementation of the MIMO system. OpenAirInterface has been considered for 4G and 5G implementations of actual mobile radio communication systems. Together with the practical MIMO, this type of solution is the starting point for future hardware building blocks involving massive MIMO systems.A quinta geração (5G) está sendo considerada uma tecnologia revolucionária no setor de telecomunicações, cujos desafios são principalmente a obtenção de qualidade de sinal e grande capacidade de trabalhar com espectro livre nas ondas milimétricas. Além disso, outras inovações importantes são a introdução de uma arquitetura mais atual e o uso de múltiplas antenas em transmissão e recepção. A comunicação digital usando ligaçõe sem fio de múltiplas entradas e múltiplas saídas (MIMO) emergiu recentemente como um dos avanços técnicos mais significativos nas comunicações modernas. A tecnologia MIMO é capaz de oferecer um elevado aumento na capacidade, sem exigir um aumento considerável na largura de banda ou potência transmitida. Esta dissertação apresenta uma visão geral dos conceitos teóricos dos sistemas MIMO. Com esses sistemas, um ganho de diversidade espacial pode ser obtido utilizando códigos espaço-tempo reais. Os sistemas SISO, SIMO e MISO são diferenciados pela capacidade de seus canais e a sua configuração em relação ao número de antenas no emissor/receptor. Para verificar a eficiência dos sistemas MIMO, realizou-se uma comparação entre a capacidade dos sistemas SISO e MIMO utilizado os princípios de Shannon. Nos sistemas MIMO condecideraram-se algumas variações no número de agregados de antenas, e a superioridade dos ganhos de transmissão dos sistemas MIMO foi demonstrada. Combinado com a tecnologia de ondas milimétricas (mmWaves), os sistemas massivos MIMO, onde o número de antenas na estação base e o número de usuários são grandes, são uma solução promissora. As implementações do SDR foram realizadas considerando uma plataforma com código Matlab aplicado aos rádios MIMO 2x2 e Universal Software Peripheral Radio (USRP). Um estudo detalhado foi inicialmente conduzido para analisar a arquitetura da USRP. Estruturas complexas de sistemas MIMO podem ser simplificadas usando métodos matemáticos implementados no Matlab para a sincronização do USRP no lado do receptor. Consideraram-se técnicas de transmissão e recepção SISO para refinar a sincronização (com 16-QAM), facilitando assim a implementação futura do sistema MIMO . Considerou-se o OpenAirInterface para implementações 4G e 5G de sistemas reais de comunicações móveis. Juntamente com o MIMO na pratica, este tipo de solução é o ponto de partida para futuros blocos de construção de hardware envolvendo sistemas MIMO massivos

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio
    corecore