14 research outputs found

    Flat panel display signal processing

    Get PDF
    Televisions (TVs) have shown considerable technological progress since their introduction almost a century ago. Starting out as small, dim and monochrome screens in wooden cabinets, TVs have evolved to large, bright and colorful displays in plastic boxes. It took until the turn of the century, however, for the TV to become like a ‘picture on the wall’. This happened when the bulky Cathode Ray Tube (CRT) was replaced with thin and light-weight Flat Panel Displays (FPDs), such as Liquid Crystal Displays (LCDs) or Plasma Display Panels (PDPs). However, the TV system and transmission formats are still strongly coupled to the CRT technology, whereas FPDs use very different principles to convert the electronic video signal to visible images. These differences result in image artifacts that the CRT never had, but at the same time provide opportunities to improve FPD image quality beyond that of the CRT. This thesis presents an analysis of the properties of flat panel displays, their relation to image quality, and video signal processing algorithms to improve the quality of the displayed images. To analyze different types of displays, the display signal chain is described using basic principles common to all displays. The main function of a display is to create visible images (light) from an electronic signal (video), requiring display chain functions like opto-electronic effect, spatial and temporal addressing and reconstruction, and color synthesis. The properties of these functions are used to describe CRT, LCDs, and PDPs, showing that these displays perform the same functions, using different implementations. These differences have a number of consequences, that are further investigated in this thesis. Spatial and temporal aspects, corresponding to ‘static’ and ‘dynamic’ resolution respectively, are covered in detail. Moreover, video signal processing is an essential part of the display signal chain for FPDs, because the display format will in general no longer match the source format. In this thesis, it is investigated how specific FPD properties, especially related to spatial and temporal addressing and reconstruction, affect the video signal processing chain. A model of the display signal chain is presented, and applied to analyze FPD spatial properties in relation to static resolution. In particular, the effect of the color subpixels, that enable color image reproduction in FPDs, is analyzed. The perceived display resolution is strongly influenced by the color subpixel arrangement. When taken into account in the signal chain, this improves the perceived resolution on FPDs, which clearly outperform CRTs in this respect. The cause and effect of this improvement, also for alternative subpixel arrangements, is studied using the display signal model. However, the resolution increase cannot be achieved without video processing. This processing is efficiently combined with image scaling, which is always required in the FPD display signal chain, resulting in an algorithm called ‘subpixel image scaling’. A comparison of the effects of subpixel scaling on several subpixel arrangements shows that the largest increase in perceived resolution is found for two-dimensional subpixel arrangements. FPDs outperform CRTs with respect to static resolution, but not with respect to ‘dynamic resolution’, i.e. the perceived resolution of moving images. Life-like reproduction of moving images is an important requirement for a TV display, but the temporal properties of FPDs cause artifacts in moving images (‘motion artifacts’), that are not found in CRTs. A model of the temporal aspects of the display signal chain is used to analyze dynamic resolution and motion artifacts on several display types, in particular LCD and PDP. Furthermore, video signal processing algorithms are developed that can reduce motion artifacts and increase the dynamic resolution. The occurrence of motion artifacts is explained by the fact that the human visual system tracks moving objects. This converts temporal effects on the display into perceived spatial effects, that can appear in very different ways. The analysis shows how addressing mismatches in the chain cause motion-dependent misalignment of image data, e.g. resulting in the ‘dynamic false contour’ artifact in PDPs. Also, non-ideal temporal reconstruction results in ‘motion blur’, i.e. a loss of sharpness of moving images, which is typical for LCDs. The relation between motion blur, dynamic resolution, and temporal properties of LCDs is analyzed using the display signal model in the temporal (frequency) domain. The concepts of temporal aperture, motion aperture and temporal display bandwidth are introduced, which enable characterization of motion blur in a simple and direct way. This is applied to compare several motion blur reduction methods, based on modified display design and driving. This thesis further describes the development of several video processing algorithms that can reduce motion artifacts. It is shown that the motion of objects in the image plays an essential role in these algorithms, i.e. they require motion estimation and compensation techniques. In LCDs, video processing for motion artifact reduction involves a compensation for the temporal reconstruction characteristics of the display, leading to the ‘motion compensated inverse filtering’ algorithm. The display chain model is used to analyze this algorithm, and several methods to increase its performance are presented. In PDPs, motion artifact reduction can be achieved with ‘motion compensated subfield generation’, for which an advanced algorithm is presented

    Methods for Light Field Display Profiling and Scalable Super-Multiview Video Coding

    Get PDF
    Light field 3D displays reproduce the light field of real or synthetic scenes, as observed by multiple viewers, without the necessity of wearing 3D glasses. Reproducing light fields is a technically challenging task in terms of optical setup, content creation, distributed rendering, among others; however, the impressive visual quality of hologramlike scenes, in full color, with real-time frame rates, and over a very wide field of view justifies the complexity involved. Seeing objects popping far out from the screen plane without glasses impresses even those viewers who have experienced other 3D displays before.Content for these displays can either be synthetic or real. The creation of synthetic (rendered) content is relatively well understood and used in practice. Depending on the technique used, rendering has its own complexities, quite similar to the complexity of rendering techniques for 2D displays. While rendering can be used in many use-cases, the holy grail of all 3D display technologies is to become the future 3DTVs, ending up in each living room and showing realistic 3D content without glasses. Capturing, transmitting, and rendering live scenes as light fields is extremely challenging, and it is necessary if we are about to experience light field 3D television showing real people and natural scenes, or realistic 3D video conferencing with real eye-contact.In order to provide the required realism, light field displays aim to provide a wide field of view (up to 180°), while reproducing up to ~80 MPixels nowadays. Building gigapixel light field displays is realistic in the next few years. Likewise, capturing live light fields involves using many synchronized cameras that cover the same display wide field of view and provide the same high pixel count. Therefore, light field capture and content creation has to be well optimized with respect to the targeted display technologies. Two major challenges in this process are addressed in this dissertation.The first challenge is how to characterize the display in terms of its capabilities to create light fields, that is how to profile the display in question. In clearer terms this boils down to finding the equivalent spatial resolution, which is similar to the screen resolution of 2D displays, and angular resolution, which describes the smallest angle, the color of which the display can control individually. Light field is formalized as 4D approximation of the plenoptic function in terms of geometrical optics through spatiallylocalized and angularly-directed light rays in the so-called ray space. Plenoptic Sampling Theory provides the required conditions to sample and reconstruct light fields. Subsequently, light field displays can be characterized in the Fourier domain by the effective display bandwidth they support. In the thesis, a methodology for displayspecific light field analysis is proposed. It regards the display as a signal processing channel and analyses it as such in spectral domain. As a result, one is able to derive the display throughput (i.e. the display bandwidth) and, subsequently, the optimal camera configuration to efficiently capture and filter light fields before displaying them.While the geometrical topology of optical light sources in projection-based light field displays can be used to theoretically derive display bandwidth, and its spatial and angular resolution, in many cases this topology is not available to the user. Furthermore, there are many implementation details which cause the display to deviate from its theoretical model. In such cases, profiling light field displays in terms of spatial and angular resolution has to be done by measurements. Measurement methods that involve the display showing specific test patterns, which are then captured by a single static or moving camera, are proposed in the thesis. Determining the effective spatial and angular resolution of a light field display is then based on an automated analysis of the captured images, as they are reproduced by the display, in the frequency domain. The analysis reveals the empirical limits of the display in terms of pass-band both in the spatial and angular dimension. Furthermore, the spatial resolution measurements are validated by subjective tests confirming that the results are in line with the smallest features human observers can perceive on the same display. The resolution values obtained can be used to design the optimal capture setup for the display in question.The second challenge is related with the massive number of views and pixels captured that have to be transmitted to the display. It clearly requires effective and efficient compression techniques to fit in the bandwidth available, as an uncompressed representation of such a super-multiview video could easily consume ~20 gigabits per second with today’s displays. Due to the high number of light rays to be captured, transmitted and rendered, distributed systems are necessary for both capturing and rendering the light field. During the first attempts to implement real-time light field capturing, transmission and rendering using a brute force approach, limitations became apparent. Still, due to the best possible image quality achievable with dense multi-camera light field capturing and light ray interpolation, this approach was chosen as the basis of further work, despite the massive amount of bandwidth needed. Decompression of all camera images in all rendering nodes, however, is prohibitively time consuming and is not scalable. After analyzing the light field interpolation process and the data-access patterns typical in a distributed light field rendering system, an approach to reduce the amount of data required in the rendering nodes has been proposed. This approach, on the other hand, requires rectangular parts (typically vertical bars in case of a Horizontal Parallax Only light field display) of the captured images to be available in the rendering nodes, which might be exploited to reduce the time spent with decompression of video streams. However, partial decoding is not readily supported by common image / video codecs. In the thesis, approaches aimed at achieving partial decoding are proposed for H.264, HEVC, JPEG and JPEG2000 and the results are compared.The results of the thesis on display profiling facilitate the design of optimal camera setups for capturing scenes to be reproduced on 3D light field displays. The developed super-multiview content encoding also facilitates light field rendering in real-time. This makes live light field transmission and real-time teleconferencing possible in a scalable way, using any number of cameras, and at the spatial and angular resolution the display actually needs for achieving a compelling visual experience

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Architectures for Adaptive Low-Power Embedded Multimedia Systems

    Get PDF
    This Ph.D. thesis describes novel hardware/software architectures for adaptive low-power embedded multimedia systems. Novel techniques for run-time adaptive energy management are proposed, such that both HW & SW adapt together to react to the unpredictable scenarios. A complete power-aware H.264 video encoder was developed. Comparison with state-of-the-art demonstrates significant energy savings while meeting the performance constraint and keeping the video quality degradation unnoticeable

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Compression and Subjective Quality Assessment of 3D Video

    Get PDF
    In recent years, three-dimensional television (3D TV) has been broadly considered as the successor to the existing traditional two-dimensional television (2D TV) sets. With its capability of offering a dynamic and immersive experience, 3D video (3DV) is expected to expand conventional video in several applications in the near future. However, 3D content requires more than a single view to deliver the depth sensation to the viewers and this, inevitably, increases the bitrate compared to the corresponding 2D content. This need drives the research trend in video compression field towards more advanced and more efficient algorithms. Currently, the Advanced Video Coding (H.264/AVC) is the state-of-the-art video coding standard which has been developed by the Joint Video Team of ISO/IEC MPEG and ITU-T VCEG. This codec has been widely adopted in various applications and products such as TV broadcasting, video conferencing, mobile TV, and blue-ray disc. One important extension of H.264/AVC, namely Multiview Video Coding (MVC) was an attempt to multiple view compression by taking into consideration the inter-view dependency between different views of the same scene. This codec H.264/AVC with its MVC extension (H.264/MVC) can be used for encoding either conventional stereoscopic video, including only two views, or multiview video, including more than two views. In spite of the high performance of H.264/MVC, a typical multiview video sequence requires a huge amount of storage space, which is proportional to the number of offered views. The available views are still limited and the research has been devoted to synthesizing an arbitrary number of views using the multiview video and depth map (MVD). This process is mandatory for auto-stereoscopic displays (ASDs) where many views are required at the viewer side and there is no way to transmit such a relatively huge number of views with currently available broadcasting technology. Therefore, to satisfy the growing hunger for 3D related applications, it is mandatory to further decrease the bitstream by introducing new and more efficient algorithms for compressing multiview video and depth maps. This thesis tackles the 3D content compression targeting different formats i.e. stereoscopic video and depth-enhanced multiview video. Stereoscopic video compression algorithms introduced in this thesis mostly focus on proposing different types of asymmetry between the left and right views. This means reducing the quality of one view compared to the other view aiming to achieve a better subjective quality against the symmetric case (the reference) and under the same bitrate constraint. The proposed algorithms to optimize depth-enhanced multiview video compression include both texture compression schemes as well as depth map coding tools. Some of the introduced coding schemes proposed for this format include asymmetric quality between the views. Knowing that objective metrics are not able to accurately estimate the subjective quality of stereoscopic content, it is suggested to perform subjective quality assessment to evaluate different codecs. Moreover, when the concept of asymmetry is introduced, the Human Visual System (HVS) performs a fusion process which is not completely understood. Therefore, another important aspect of this thesis is conducting several subjective tests and reporting the subjective ratings to evaluate the perceived quality of the proposed coded content against the references. Statistical analysis is carried out in the thesis to assess the validity of the subjective ratings and determine the best performing test cases
    corecore