1,231 research outputs found

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Frequency Domain Hybrid-ARQ Chase Combining for Broadband MIMO CDMA Systems

    Get PDF
    In this paper, we consider high-speed wireless packet access using code division multiple access (CDMA) and multiple-input multiple-output (MIMO). Current wireless standards, such as high speed packet access (HSPA), have adopted multi-code transmission and hybrid-automatic repeat request (ARQ) as major technologies for delivering high data rates. The key technique in hybrid-ARQ, is that erroneous data packets are kept in the receiver to detect/decode retransmitted ones. This strategy is refereed to as packet combining. In CDMA MIMO-based wireless packet access, multi-code transmission suffers from severe performance degradation due to the loss of code orthogonality caused by both interchip interference (ICI) and co-antenna interference (CAI). This limitation results in large transmission delays when an ARQ mechanism is used in the link layer. In this paper, we investigate efficient minimum mean square error (MMSE) frequency domain equalization (FDE)-based iterative (turbo) packet combining for cyclic prefix (CP)-CDMA MIMO with Chase-type ARQ. We introduce two turbo packet combining schemes: i) In the first scheme, namely "chip-level turbo packet combining", MMSE FDE and packet combining are jointly performed at the chip-level. ii) In the second scheme, namely "symbol-level turbo packet combining", chip-level MMSE FDE and despreading are separately carried out for each transmission, then packet combining is performed at the level of the soft demapper. The computational complexity and memory requirements of both techniques are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. The throughput is evaluated for some representative antenna configurations and load factors to show the gains offered by the proposed techniques.Comment: Submitted to IEEE Transactions on Vehicular Technology (Apr 2009

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure

    Peak-Age Violation Guarantees for the Transmission of Short Packets over Fading Channels

    Get PDF
    We investigate the probability that the peak age of information in a point-to-point communication system operating over a multiantenna wireless fading channel exceeds a predetermined value. The packets are scheduled according to a last-come first-serve policy with preemption in service, and are transmitted over the channel using a simple automatic repetition request protocol. We consider quadrature phase shift keying modulation, pilot-assisted transmission, maximum-likelihood channel estimation, and mismatched scaled nearest-neighbor decoding. Our analysis, which exploits nonasymptotic tools in information theory, allows one to determine, for a given information packet size, the physical layer parameters such as the SNR, the number of transmit and receive antennas, the amount of frequency diversity to exploit, and the number of pilot symbols, to ensure that the system operates below a target peak-age violation probability.Comment: 6 pages, 6 figures. To be presented at Infocom 201

    PPR: Partial Packet Recovery for Wireless Networks

    Get PDF
    Bit errors occur over wireless channels when the signal isn't strongenough to overcome the effects of interference and noise. Currentwireless protocols may use forward error correction (FEC) to correct forsome (small) number of bit errors, but generally retransmit the wholepacket if the FEC is insufficient. We observe that current wirelessmesh network protocols retransmit a number of packets and that most ofthese retransmissions end up sending bits that have already beenreceived multiple times, wasting network capacity. To overcome thisinefficiency, we develop, implement, and evaluate a partial packetrecovery (PPR) system.PPR incorporates three new ideas: (1) SoftPHY, an expandedphysical layer (PHY) interface to provide hints to the higher layersabout how ``close'' the actual received symbol was to the one decoded,(2) a postamble scheme to recover data even when a packet'spreamble is corrupted and not decodable at the receiver, and (3) PP-ARQ, an asynchronous link-layer retransmission protocol that allowsa receiver to compactly encode and request for retransmission only thoseportions of a packet that are likely in error.Our experimental results from a 27-node 802.15.4 testbed that includesTelos motes with 2.4 GHz Chipcon radios and GNU Radio nodes implementingthe Zigbee standard (802.15.4) show that PPR increases the framedelivery rate by a factor of 2x under moderate load, and7x under heavy load when many links have marginal quality

    Hybrid ARQ with parallel and serial concatenated convolutional codes for next generation wireless communications

    Get PDF
    This research focuses on evaluating the currently used FEC encoding-decoding schemes and improving the performance of error control systems by incorporating these schemes in a hybrid FEC-ARQ environment. Beginning with an overview of wireless communications and the various ARQ protocols, the thesis provides an in-depth explanation of convolutional encoding and Viterbi decoding, turbo (PCCC) and serial concatenated convolutional (SCCC) encoding with their respective MAP decoding strategies.;A type-II hybrid ARQ scheme with SCCCs is proposed for the first time and is a major contribution of this thesis. A vast improvement is seen in the BER performance of the successive individual FEC schemes discussed above. Also, very high throughputs can be achieved when these schemes are incorporated in an adaptive type-II hybrid ARQ system.;Finally, the thesis discusses the equivalence of the PCCCs and the SCCCs and proposes a technique to generate a hybrid code using both schemes

    S-RLNC based MAC Optimization for Multimedia Data Transmission over LTE/LTE-A Network

    Get PDF
    The high pace emergence in communication systems and associated demands has triggered academia-industries to achieve more efficient solution for Quality of Service (QoS) delivery for which recently introduced Long Term Evolution (LTE) or LTE-Advanced has been found as a promising solution. However, enabling QoS and Quality of Experience (QoE) delivery for multimedia data over LTE has always been a challenging task. QoS demands require reliable data transmission with minimum signalling overheads, computational complexity, minimum latency etc, for which classical Hybrid Automatic Repeat Request (HREQ) based LTE-MAC is not sufficient. To alleviate these issues, in this paper a novel and robust Multiple Generation Mixing (MGM) assisted Systematic Random Linear Network Coding (S-RLNC) model is developed to be used at the top of LTE MAC protocol stack for multimedia data transmission over LTE/LTE-A system. Our proposed model incorporated interleaving and coding approach along with MGM to ensure secure, resource efficient and reliable multiple data delivery over LTE systems. The simulation results reveal that our proposed S-RLNC-MGM based MAC can ensure QoS/QoE delivery over LTE systems for multimedia data communication
    • 

    corecore