5,854 research outputs found

    In-loop Feature Tracking for Structure and Motion with Out-of-core Optimization

    Get PDF
    In this paper, a novel and approach for obtaining 3D models from video sequences captured with hand-held cameras is addressed. We define a pipeline that robustly deals with different types of sequences and acquiring devices. Our system follows a divide and conquer approach: after a frame decimation that pre-conditions the input sequence, the video is split into short-length clips. This allows to parallelize the reconstruction step which translates into a reduction in the amount of computational resources required. The short length of the clips allows an intensive search for the best solution at each step of reconstruction which robustifies the system. The process of feature tracking is embedded within the reconstruction loop for each clip as opposed to other approaches. A final registration step, merges all the processed clips to the same coordinate fram

    Creating Simplified 3D Models with High Quality Textures

    Get PDF
    This paper presents an extension to the KinectFusion algorithm which allows creating simplified 3D models with high quality RGB textures. This is achieved through (i) creating model textures using images from an HD RGB camera that is calibrated with Kinect depth camera, (ii) using a modified scheme to update model textures in an asymmetrical colour volume that contains a higher number of voxels than that of the geometry volume, (iii) simplifying dense polygon mesh model using quadric-based mesh decimation algorithm, and (iv) creating and mapping 2D textures to every polygon in the output 3D model. The proposed method is implemented in real-time by means of GPU parallel processing. Visualization via ray casting of both geometry and colour volumes provides users with a real-time feedback of the currently scanned 3D model. Experimental results show that the proposed method is capable of keeping the model texture quality even for a heavily decimated model and that, when reconstructing small objects, photorealistic RGB textures can still be reconstructed.Comment: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Page 1 -

    Stabilization of Extra Dimensions and The Dimensionality of the Observed Space

    Full text link
    We present a simple model for the late time stabilization of extra dimensions. The basic idea is that brane solutions wrapped around extra dimensions, which is allowed by string theory, will resist expansion due to their winding mode. The momentum modes in principle work in the opposite way. It is this interplay that leads to dynamical stabilization. We use the idea of democratic wrapping \cite{art5}-\cite{art6}, where in a given decimation of extra dimensions, all possible winding cases are considered. To simplify the study further we assumed a symmetric decimation in which the total number of extra dimensions is taken to be NpNp where N can be called the order of the decimation. We also assumed that extra dimensions all have the topology of tori. We show that with these rather conservative assumptions, there exists solutions to the field equations in which the extra dimensions are stabilized and that the conditions do not depend on pp. This fact means that there exists at least one solution to the asymmetric decimation case. If we denote the number of observed space dimensions (excluding time) by mm, the condition for stabilization is m3m\geq 3 for pure Einstein gravity and m3m\leq 3 for dilaton gravity massaged by string theory parameters.Comment: Final versio

    Fast algorithm for the 3-D DCT-II

    Get PDF
    Recently, many applications for three-dimensional (3-D) image and video compression have been proposed using 3-D discrete cosine transforms (3-D DCTs). Among different types of DCTs, the type-II DCT (DCT-II) is the most used. In order to use the 3-D DCTs in practical applications, fast 3-D algorithms are essential. Therefore, in this paper, the 3-D vector-radix decimation-in-frequency (3-D VR DIF) algorithm that calculates the 3-D DCT-II directly is introduced. The mathematical analysis and the implementation of the developed algorithm are presented, showing that this algorithm possesses a regular structure, can be implemented in-place for efficient use of memory, and is faster than the conventional row-column-frame (RCF) approach. Furthermore, an application of 3-D video compression-based 3-D DCT-II is implemented using the 3-D new algorithm. This has led to a substantial speed improvement for 3-D DCT-II-based compression systems and proved the validity of the developed algorithm

    Implementation of JPEG compression and motion estimation on FPGA hardware

    Full text link
    A hardware implementation of JPEG allows for real-time compression in data intensivve applications, such as high speed scanning, medical imaging and satellite image transmission. Implementation options include dedicated DSP or media processors, FPGA boards, and ASICs. Factors that affect the choice of platform selection involve cost, speed, memory, size, power consumption, and case of reconfiguration. The proposed hardware solution is based on a Very high speed integrated circuit Hardware Description Language (VHDL) implememtation of the codec with prefered realization using an FPGA board due to speed, cost and flexibility factors; The VHDL language is commonly used to model hardware impletations from a top down perspective. The VHDL code may be simulated to correct mistakes and subsequently synthesized into hardware using a synthesis tool, such as the xilinx ise suite. The same VHDL code may be synthesized into a number of sifferent hardware architetcures based on constraints given. For example speed was the major constraint when synthesizing the pipeline of jpeg encoding and decoding, while chip area and power consumption were primary constraints when synthesizing the on-die memory because of large area. Thus, there is a trade off between area and speed in logic synthesis

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various 1,p\ell_{1,p} matrix norms with p1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods
    corecore