67 research outputs found

    A New Adaptive Frame Aggregation Method for Downlink WLAN MU-MIMO Channels

    Get PDF
    Accommodating the heterogeneous traffic demand among streams in the downlink MU-MIMO channel is among the challenges that affect the transmission efficiency since users in the channel do not always have the same traffic demand. Consequently, it is feasible to adjust the frame size to maximize the system throughput. The existing adaptive aggregation solutions do not consider the effects of different traffic scenarios and they use a Poison traffic model which is inadequate to represent the real network traffic scenarios, thus leading to suboptimal solutions. In this study, we propose some adaptive aggregation strategies which employ a novel dynamic adaptive aggregation policy selection algorithm in addressing the challenges of heterogenous traffic demand in the downlink MU-MIMO channel. Different traffic models are proposed to emulate real world traffic scenarios in the network and to analyze the proposed aggregation polices with respect to various traffic models. Finally, through simulation, we demonstrate the performance of our adaptive algorithm over the baseline FIFO aggregation approach in terms of system throughput performance and channel utilization in achieving the optimal frame size of the system

    Performance of WLAN in Downlink MU-MIMO Channel with the Least Cost in Terms of Increased Delay

    Get PDF
    To improve the performance of IEEE 802.11 wireless local area (WLAN) networks, different frame-aggregation algorithms are proposed by IEEE 802.11n/ac standards to improve the throughput performance of WLANs. However, this improvement will also have a related cost in terms of increasing delay. The traffic load generated by mixed types of applications in current modern networks demands different network performance requirements in terms of maintaining some form of an optimal trade-off between maximizing throughput and minimizing delay. However, the majority of existing researchers have only attempted to optimize either one (to maximize throughput or minimize the delay). Both the performance of throughput and delay can be affected by several factors such as a heterogeneous traffic pattern, target aggregate frame size, channel condition, competing stations, etc. However, under the effect of uncertain conditions of heterogeneous traffic patterns and channel conditions in a network, determining the optimal target aggregate frame size is a significant approach that can be controlled to manage both throughput and delay. The main contribution of this study was to propose an adaptive aggregation algorithm that allows an adaptive optimal trade-off between maximizing system throughput and minimizing system delay in the WLAN downlink MU-MIMO channel. The proposed approach adopted different aggregation policies to adaptively select the optimal aggregation policy that allowed for achieving maximum system throughput by minimizing delay. Both queue delay and transmission delay, which have a significant impact when frame-aggregation algorithms are adopted, were considered. Different test case scenarios were considered such as channel error, traffic pattern, and number of competing stations. Through systemlevel simulation, the performance of the proposed approach was validated over the FIFO aggregation algorithm and earlier adaptive aggregation approaches, which only focused on achieving maximum throughput at the expense of delay. The performance of the proposed approach was evaluated under the effects of heterogenous traffic patterns for VoIP and video traffic applications, channel conditions, and number of STAs for WLAN downlink MU-MIMO channels

    In-flight entertainment datalink analysis and simulation

    Get PDF
    In-Flight Entertainment (IFE) datalink is one of the airport connectivity areas, where efforts are being made by different stakeholders to improve and update the entertainment services offered to the passengers. An important objective of IFE datalink is to increase the flight operation efficiency by managing IFE data transfer within turnaround time which is about 45 minutes. With the rapid advancements and innovation in multimedia applications and services, the IFE data size in the future will turn into terabytes, therefore, this transfer requires a multi-Gbps datalink in order to be completed within expected turnaround time. This paper focuses on simulation of IFE datalink communication scenario at an airport surface using Wi-Fi (802.11ac) technology, provides rules and guidelines on suitability of wireless datalinks for IFE update at the airports, studies QoS requirements, and performs optimization. Several aspects of the IFE datalink selection and deployment have been considered, such as airport operational areas, airport layouts, radio frequency, and data congestion before conducting a capacity and coverage analysi

    IEEE 802.11ac Performance Analysis and Measurement Tools

    Get PDF
    Wireless local area networks have witnessed a large growth over the course of the last decade which has led to increased data traffic and demand for higher speeds. One of the IEEE 802.11 standards family that was developed to offer very high throughput WLANs is IEEE 802.11ac. Theoretically, with the PHY and MAC enhancements embedded in this standard, it is expected to provide gigabit-per-second data rates. The WLAN standards in addition to other wireless technologies such as Bluetooth and ZigBee share the same unlicensed band, and the increase in the use of this band requires monitoring the wireless spectrum and addressing wireless coexistence problems via spectrum surveys which usually produce a large data volume, that requires advanced hardware capabilities to help overcome the challenges of storing, retrieving and processing the data. This thesis reports on the performance analysis of an IEEE 802.11ac network with respect to varied channel conditions such as SNR and SIR. Mathematical models of the relationship between the throughput, the delay of the network and SNR using interpolation, were provided. The results show that for good channel conditions i.e. high SNR, 802.11ac offers high throughput values. However, the throughput is highly affected by the interference level caused by other 802.11ac devices that share the same channel, as the throughput of the under-test network is directly proportional to the level of SIR. Moreover, this thesis details a measurement tool that implements a probabilistic efficient storage algorithm (PESA) proposed by Dr. Al-Kalaa with US FDA that could be used in deploying long-term spectrum surveys in the time-domain using LabVIEW. PESA algorithm is based on representing the dynamic range of a monitoring device by a Gaussian Mixture Model, establishing windows of activity and inactivity and mapping the windows to the Gaussian component with the largest responsibility for each window mean. The indexes of the Gaussian components are stored in addition to the count of samples in each window resulting in a significant storage volume reduction. The software was used to survey the 2.4 GHz band in a healthcare facility for 7 hours. The results show a reduction in the required storage size of approximately 98.8% while maintaining an accurate estimation of the channel utilization

    Performance of an Adaptive Aggregation Mechanism in a Noisy WLAN Downlink MU-MIMO Channel

    Get PDF
    This paper investigates an adaptive frame aggregation technique in the medium access control (MAC) layer for the Wireless Local Area Network (WALN) downlink Multi-User–Multiple-In Multiple-Out (MU-MIMO) channel. In tackling the challenges of heterogeneous traffic demand among spatial streams, we proposed a new adaptive aggregation algorithm which has a superior performance over the baseline First-in–First-Out (FIFO) scheme in terms of system throughput performance and channel utilization. However, this earlier work does not consider the effects of wireless channel error. In addressing the limitations of this work, this study contributes an enhanced version of the earlier model considering the effect of channel error. In this approach, a dynamic adaptive aggregation selection scheme is proposed by employing novel criteria for selecting the optimal aggregation policy in WLAN downlink MU-MIMO channel. Two simulation setups are conducted to achieve this approach. The simulation setup in Step 1 performs the dynamic optimal aggregation policy selection strategy as per the channel condition, traffic pattern, and number of stations in the network. Step 2 then performed the optimal wireless frame construction that would be transmitted in the wireless channel in adopting the optimal aggregation policy obtained from Step 1 that maximizes the system performance. The proposed adaptive algorithm not only achieve the optimal system throughput in minimizing wasted space channel time but also provide a good performance under the effects of different channel conditions, different traffic models such as Pareto, Weibull, and fBM, and number of users using the traffic mix of VoIP and video data. Through system-level simulation, our results again show the superior performance of our proposed aggregation mechanism in terms of system throughput performance and space channel time compared to the baseline FIFO aggregation approach

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    Cognitive radio networks : quality of service considerations and enhancements

    Get PDF
    The explosive growth of wireless and mobile networks, such as the Internet of Things and 5G, has led to a massive number of devices that primarily use wireless channels within a limited range of the radio frequency spectrum (RFS). The use of RFS is heavily regulated, both nationally and internationally, and is divided into licensed and unlicensed bands. While many of the licensed wireless bands are underutilised, useable unlicensed bands are usually overcrowded, making the efficient use of RFS one of the critical challenges faced by future wireless communication technologies. The cognitive radio (CR) concept is proposed as a promising solution for the underutilisation of useful RFS bands. Fundamentally, CR technology is based on determining the unoccupied licensed RFS bands, called spectrum white spaces or holes, and accessing them to achieve better RFS utilisation and transmission propagation. The holes are the frequencies unused by the licensed user, or primary user (PU). Based on spectrum sensing, a CR node, or secondary user (SU), senses the surrounding spectrum periodically to detect any potential PU transmission in the current channel and to identify the available spectrum holes. Under current RFS regulations, SUs may use spectrum holes as long as their transmissions do not interfere with those of the PU. However, effective spectrum sensing can introduce overheads to a CR node operation. Such overheads affect the quality of service (QoS) of the running applications. Reducing the sensing impact on the QoS is one of the key challenges to adopting CR technology, and more studies of QoS issues related to implementing CR features are needed. This thesis aims to address these QoS issues in CR while considered the enhancement of RFS utilisation. This study concentrates on the spectrum sensing function, among other CR functions, because of its major impact on QoS and spectrum utilisation. Several spectrum sensing methods are reviewed to identify potential research gaps in analysing and addressing related QoS implications. It has been found that none of the well-known sensing techniques is suitable for all the diverse QoS requirements and RFS conditions: in fact, higher accuracy sensing methods cause a significant QoS degradation, as illustrated by several simulations in this work. For instance, QoS degradation caused by high-accuracy sensing has not yet been addressed in the IEEE 802.11e QoS mechanism used in the proposed CR standard, IEEE 802.11af (or White-Fi). This study finds that most of the strategies proposed to conduct sensing are based on a fixed sensing method that is not adaptable to the changeable nature of QoS requirements. In contrast, this work confirms the necessity of using various sensing techniques and parameters during a CR node operation for better performance

    Performance of Wi-Fi coordination schemes for VolP in the presence of FTP data.

    Get PDF
    Evolved 3GPP cellular core networks have made co-existence of heterogeneous Wireless Access networks (HetNets) possible. The evolved core network along with the development of multimode end user devices have led to the realisation of converged Access Networks. Wireless Local Area Networks (WLANs) are assuming a prominent role in the telecommunications ecosystem due to their cost effectiveness, ease of deployment and operation in the free spectrum. Although WLANs are only data centric, there will be greater demand for Voice over Internet Protocol (VoIP) over WLANs as multimode smart-phones become accessible and operators integrate WLANs into their business models. Therefore, it is imperative that WLAN’s ability to support VoIP services is thoroughly understood. Currently, the design of call admission control mechanisms for WLANs that support heterogeneous (data and voice) traffic is a challenging issue. The challenge stems from the difficulty of modelling the behaviour heterogeneous traffic, mixed VoIP and data traffic. IEEE 802.11 WLANs use two types of medium access schemes, the polling based schemes and the contention based schemes. Both types of WLAN coordination schemes have not been thoroughly investigated for their ability to support VoIP over WLANs in the presence of File Transfer Protocol (FTP) data sessions. File Transfer Protocol (FTP) is a Transport Control Protocol(TCP) based file exchange protocol. TCP was optimised for wired networks and as a result it is unsuitable for wireless network. Furthermore, it was not optimised to co-exist with VoIP and as a result of its burstiness it has severe impact on the jitter, packet-loss and delay of VoIP traffic. The purpose of the work presented in this report is to evaluate the performance of Distributed Coordinated Function (DCF), Point Coordination Function (PCF) and Enhanced Distributed Coordinated Function (EDCF) techniques’ ability to manage Voice Over Internet Protocol (VoIP) over WLAN in the presence of contending heavy FTP data. The key question this work seeks to answer is, are the Medium Access Control (MAC) coordination techniques in their present form capable of carrying VoIP data in the presence of other data. In other words, how realistic is the deployment of VoIP services with FTP services in the same network, using the current coordination schemes for WLAN? Can these coordination schemes be improved by using current MAC enhancements such as fragmentation and increasing the Access Point buffer? The study is carried out for IEEE 802.11g as this is still the most widely deployed standard. The performance is evaluated by setting up a network of stations that generate both voice and FTP traffic in OPNET. The two network configurations are 30-Voice stations and 30-FTP stations; 15-Voice stations and 45-FTP stations. Moreover, two codecs G.711 and G.723 are compared to assess the effect of codec selection on performance
    • …
    corecore