1,070 research outputs found

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    A Logic for True Concurrency

    Full text link
    We propose a logic for true concurrency whose formulae predicate about events in computations and their causal dependencies. The induced logical equivalence is hereditary history preserving bisimilarity, and fragments of the logic can be identified which correspond to other true concurrent behavioural equivalences in the literature: step, pomset and history preserving bisimilarity. Standard Hennessy-Milner logic, and thus (interleaving) bisimilarity, is also recovered as a fragment. We also propose an extension of the logic with fixpoint operators, thus allowing to describe causal and concurrency properties of infinite computations. We believe that this work contributes to a rational presentation of the true concurrent spectrum and to a deeper understanding of the relations between the involved behavioural equivalences.Comment: 31 pages, a preliminary version appeared in CONCUR 201

    The Complexity of Model Checking Higher-Order Fixpoint Logic

    Full text link
    Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed \lambda-calculus and the modal \lambda-calculus. This makes it a highly expressive temporal logic that is capable of expressing various interesting correctness properties of programs that are not expressible in the modal \lambda-calculus. This paper provides complexity results for its model checking problem. In particular we consider those fragments of HFL built by using only types of bounded order k and arity m. We establish k-fold exponential time completeness for model checking each such fragment. For the upper bound we use fixpoint elimination to obtain reachability games that are singly-exponential in the size of the formula and k-fold exponential in the size of the underlying transition system. These games can be solved in deterministic linear time. As a simple consequence, we obtain an exponential time upper bound on the expression complexity of each such fragment. The lower bound is established by a reduction from the word problem for alternating (k-1)-fold exponential space bounded Turing Machines. Since there are fixed machines of that type whose word problems are already hard with respect to k-fold exponential time, we obtain, as a corollary, k-fold exponential time completeness for the data complexity of our fragments of HFL, provided m exceeds 3. This also yields a hierarchy result in expressive power.Comment: 33 pages, 2 figures, to be published in Logical Methods in Computer Scienc

    An Effective Fixpoint Semantics for Linear Logic Programs

    Full text link
    In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog that consists of the language LO enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint semantics based on a new operator in the style of Tp working over constraints. An application of the fixpoint operator can be computed algorithmically. As sufficient conditions for termination, we show that the fixpoint computation is guaranteed to converge for propositional LO. To our knowledge, this is the first attempt to define an effective fixpoint semantics for linear logic programs. As an application of our framework, we also present a formal investigation of the relations between LO and Disjunctive Logic Programming. Using an approach based on abstract interpretation, we show that DLP fixpoint semantics can be viewed as an abstraction of our semantics for LO. We prove that the resulting abstraction is correct and complete for an interesting class of LO programs encoding Petri Nets.Comment: 39 pages, 5 figures. To appear in Theory and Practice of Logic Programmin

    Model Checking Linear Logic Specifications

    Full text link
    The overall goal of this paper is to investigate the theoretical foundations of algorithmic verification techniques for first order linear logic specifications. The fragment of linear logic we consider in this paper is based on the linear logic programming language called LO enriched with universally quantified goal formulas. Although LO was originally introduced as a theoretical foundation for extensions of logic programming languages, it can also be viewed as a very general language to specify a wide range of infinite-state concurrent systems. Our approach is based on the relation between backward reachability and provability highlighted in our previous work on propositional LO programs. Following this line of research, we define here a general framework for the bottom-up evaluation of first order linear logic specifications. The evaluation procedure is based on an effective fixpoint operator working on a symbolic representation of infinite collections of first order linear logic formulas. The theory of well quasi-orderings can be used to provide sufficient conditions for the termination of the evaluation of non trivial fragments of first order linear logic.Comment: 53 pages, 12 figures "Under consideration for publication in Theory and Practice of Logic Programming

    Permutation Games for the Weakly Aconjunctive μ\mu-Calculus

    Full text link
    We introduce a natural notion of limit-deterministic parity automata and present a method that uses such automata to construct satisfiability games for the weakly aconjunctive fragment of the μ\mu-calculus. To this end we devise a method that determinizes limit-deterministic parity automata of size nn with kk priorities through limit-deterministic B\"uchi automata to deterministic parity automata of size O((nk)!)\mathcal{O}((nk)!) and with O(nk)\mathcal{O}(nk) priorities. The construction relies on limit-determinism to avoid the full complexity of the Safra/Piterman-construction by using partial permutations of states in place of Safra-Trees. By showing that limit-deterministic parity automata can be used to recognize unsuccessful branches in pre-tableaux for the weakly aconjunctive μ\mu-calculus, we obtain satisfiability games of size O((nk)!)\mathcal{O}((nk)!) with O(nk)\mathcal{O}(nk) priorities for weakly aconjunctive input formulas of size nn and alternation-depth kk. A prototypical implementation that employs a tableau-based global caching algorithm to solve these games on-the-fly shows promising initial results

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page
    corecore