17,692 research outputs found

    Cue usage in volleyball : a time course comparison of elite, intermediate and novice female players

    Get PDF
    This study compared visual search strategies in adult female volleyball players of three levels. Video clips of the attack of the opponent team were presented on a large screen and participants reacted to the final pass before the spike. Reaction time, response accuracy and eye movement patterns were measured. Elite players had the highest response accuracy (97.50 ± 3.5%) compared to the intermediate (91.50 ± 4.7%) and novice players (83.50 ± 17.6%; p<0.05). Novices had a remarkably high range of reaction time but no significant differences were found in comparison to the reaction time of elite and intermediate players. In general, the three groups showed similar gaze behaviour with the apparent use of visual pivots at moments of reception and final pass. This confirms the holistic model of image perception for volleyball and suggests that expert players extract more information from parafoveal regions

    Class-Based Feature Matching Across Unrestricted Transformations

    Get PDF
    We develop a novel method for class-based feature matching across large changes in viewing conditions. The method is based on the property that when objects share a similar part, the similarity is preserved across viewing conditions. Given a feature and a training set of object images, we first identify the subset of objects that share this feature. The transformation of the feature's appearance across viewing conditions is determined mainly by properties of the feature, rather than of the object in which it is embedded. Therefore, the transformed feature will be shared by approximately the same set of objects. Based on this consistency requirement, corresponding features can be reliably identified from a set of candidate matches. Unlike previous approaches, the proposed scheme compares feature appearances only in similar viewing conditions, rather than across different viewing conditions. As a result, the scheme is not restricted to locally planar objects or affine transformations. The approach also does not require examples of correct matches. We show that by using the proposed method, a dense set of accurate correspondences can be obtained. Experimental comparisons demonstrate that matching accuracy is significantly improved over previous schemes. Finally, we show that the scheme can be successfully used for invariant object recognition

    Free-flight responses of Drosophila melanogaster to attractive odors

    Get PDF
    Many motile organisms localize the source of attractive odorants by following plumes upwind. In the case of D. melanogaster, little is known of how individuals alter their flight trajectories after encountering and losing a plume of an attractive odorant. We have characterized the three-dimensional flight behavior of D. melanogaster in a wind tunnel under a variety of odor conditions. In the absence of olfactory cues, hungry flies initiate flight and display anemotactic orientation. Following contact with a narrow ribbon plume of an attractive odor, flies reduce their crosswind velocity while flying faster upwind, resulting in a surge directed toward the odor source. Following loss of odor contact due to plume truncation, flies frequently initiate a stereotyped crosswind casting response, a behavior rarely observed in a continuous odor plume. Similarly, within a homogeneous odor cloud, flies move fast while maintaining an upwind heading. These results indicate both similarities and differences between the behavior of D. melanogaster and the responses of male moths to pheromone plumes, suggesting possible differences in underlying neural mechanisms

    Analysis of single particle trajectories: when things go wrong

    Full text link
    To recover the long-time behavior and the statistics of molecular trajectories from the large number (tens of thousands) of their short fragments, obtained by super-resolution methods at the single molecule level, data analysis based on a stochastic model of their non-equilibrium motion is required. Recently, we characterized the local biophysical properties underlying receptor motion based on coarse-grained long-range interactions, corresponding to attracting potential wells of large sizes. The purpose of this letter is to discuss optimal estimators and show what happens when thing goes wrong.Comment: 4 page

    ROAM: a Rich Object Appearance Model with Application to Rotoscoping

    Get PDF
    Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given a first closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling

    Autonomous real-time surveillance system with distributed IP cameras

    Get PDF
    An autonomous Internet Protocol (IP) camera based object tracking and behaviour identification system, capable of running in real-time on an embedded system with limited memory and processing power is presented in this paper. The main contribution of this work is the integration of processor intensive image processing algorithms on an embedded platform capable of running at real-time for monitoring the behaviour of pedestrians. The Algorithm Based Object Recognition and Tracking (ABORAT) system architecture presented here was developed on an Intel PXA270-based development board clocked at 520 MHz. The platform was connected to a commercial stationary IP-based camera in a remote monitoring station for intelligent image processing. The system is capable of detecting moving objects and their shadows in a complex environment with varying lighting intensity and moving foliage. Objects moving close to each other are also detected to extract their trajectories which are then fed into an unsupervised neural network for autonomous classification. The novel intelligent video system presented is also capable of performing simple analytic functions such as tracking and generating alerts when objects enter/leave regions or cross tripwires superimposed on live video by the operator

    Realtime Multilevel Crowd Tracking using Reciprocal Velocity Obstacles

    Full text link
    We present a novel, realtime algorithm to compute the trajectory of each pedestrian in moderately dense crowd scenes. Our formulation is based on an adaptive particle filtering scheme that uses a multi-agent motion model based on velocity-obstacles, and takes into account local interactions as well as physical and personal constraints of each pedestrian. Our method dynamically changes the number of particles allocated to each pedestrian based on different confidence metrics. Additionally, we use a new high-definition crowd video dataset, which is used to evaluate the performance of different pedestrian tracking algorithms. This dataset consists of videos of indoor and outdoor scenes, recorded at different locations with 30-80 pedestrians. We highlight the performance benefits of our algorithm over prior techniques using this dataset. In practice, our algorithm can compute trajectories of tens of pedestrians on a multi-core desktop CPU at interactive rates (27-30 frames per second). To the best of our knowledge, our approach is 4-5 times faster than prior methods, which provide similar accuracy

    Dissemination, redissemination and fiber life

    Get PDF
    The technical background of dissemination of carbon fibers as well as the possibility of redissemination and fiber life are outlined. Plume spread and weather, measures of pollution and of damage potential, and parameters controlling dissemination patterns are among the topics discussed. It is shown that the redissemination rate off hard surfaces decreases with time and that fiber length decreases with time. Redissemination from vegetated land is shown to be insignificant
    corecore