13,229 research outputs found

    Controllable Fractional-Order Analogue Electronic Circuits

    Get PDF
    Disertační práce se zabývá syntézou a analýzou nových obvodových struktur neceločíselného (fraktálního) řádu s řiditelnými parametry. Hlavní cíl této práce je návrh nových řešení filtračních struktur fraktálního řádu v proudovém módu, emulátorů prvků fraktálního řádu a také oscilátorů. Práce obsahuje návrh tří emulátorů pasivního prvku fraktálního řádu, tři filtrační struktury a dva oscilátory navržené na základě využití pasivního prvku fraktálního řádu v jejich obvodové struktuře a dvě obecné koncepce filtrů fraktálního řádu založené na využití aproximace přenosové funkce fraktálního řádu. Na základě obecných koncepcí jsou v práci navrženy filtry fraktálního řádu typu dolní a horní propust. Díky aktivním prvkům s přeladitelnými parametry, které jsou užity v obvodových strukturách je zajištěna řiditelnost řádu filtru, jeho pólového kmitočtu a některých případech i činitele jakosti. Vlastnosti všech zapojení jsou ověřeny počítačovými simulacemi za pomoci behavioralních simulačních modelů aktivních prvků. Některé z uvedených obvodů byly realizovány na DPS a jejich vlastnosti ověřeny experimentálním měřením.The doctoral thesis focuses on the synthesis and analysis of novel non-integer-order (fractional-order) circuit structures with electronically adjustable parameters. The main goal of the thesis is the design of new solutions of fractional-order current-mode filtering structures, fractional-order passive elements and also oscillators. The thesis contains the designs of three emulators of fractional-order elements, three filtering structures and two oscillators based on the usage of a fractional-order passive element in their circuit structure, and two general conceptions of fractional-order filters based on an approximation of the fractional-order transfer function. Based on general conceptions of the filtering structures, the fractional-order low-pass and high-pass filters are designed. The adjustability of the order, the pole frequency and in several cases also the quality factor of the proposed circuits is provided by used active elements with adjustable parameters. The features of the proposed circuits are verified by simulations using behavioural simulation models of the active elements. Several of these circuits were implemented on PCB and verified by laboratory measurement.

    Optimized Quality Factor of Fractional Order Analog Filters with Band-Pass and Band-Stop Characteristics

    Full text link
    Fractional order (FO) filters have been investigated in this paper, with band-pass (BP) and band-stop (BS) characteristics, which can not be achieved with conventional integer order filters with orders lesser then two. The quality factors for symmetric and asymmetric magnitude response have been optimized using real coded Genetic Algorithm (GA) for a user specified center frequency. Parametric influence of the FO filters on the magnitude response is also illustrated with credible numerical simulations.Comment: 6 pages, 13 figures; 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), July 2012, Coimbator

    BICEP2 II: Experiment and Three-Year Data Set

    Full text link
    We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1 to 5 degrees (ℓ\ell=40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 μ\muK sqrt(s). The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.2 μ\muK arcmin) over an effective area of 384 square degrees within a 1000 square degree field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.Comment: 30 pages, 24 figure

    The Beauty of Symmetry: Common-mode rejection filters for high-speed interconnects and balanced microwave circuits

    Get PDF
    Common-mode rejection filters operating at microwave frequencies have been the subject of intensive research activity in the last decade. These filters are of interest for the suppression of common-mode noise in high-speed digital circuits, where differential signals are widely employed due to the high immunity to noise, electromagnetic interference (EMI) and crosstalk of differential-mode interconnects. These filters can also be used to improve common-mode rejection in microwave filters and circuits dealing with differential signals. Ideally, common-mode stopband filters should be transparent for the differential mode from DC up to very high frequencies (all-pass), should preserve the signal integrity for such mode, and should exhibit the widest and deepest possible rejection band for the common mode in the region of interest. Moreover, these characteristics should be achieved by means of structures with the smallest possible size. In this article, several techniques for the implementation of common-mode suppression filters in planar technology are reviewed. In all the cases, the strategy to simultaneously achieve common-mode suppression and all-pass behavior for the differential mode is based on selective mode-suppression. This selective mode suppression (either the common or the differential mode) in balanced lines is typically (although not exclusively) achieved by symmetrically loading the lines with symmetric resonant elements, opaque for the common-mode and transparent for the differential mode (common-mode suppression), or vice versa (differential-mode suppression).MINECO, Spain-TEC2013-40600-R, TEC2013-41913-PGeneralitat de Catalunya-2014SGR-15

    Systems control theory applied to natural and synthetic musical sounds

    Get PDF
    Systems control theory is a far developped field which helps to study stability, estimation and control of dynamical systems. The physical behaviour of musical instruments, once described by dynamical systems, can then be controlled and numerically simulated for many purposes. The aim of this paper is twofold: first, to provide the theoretical background on linear system theory, both in continuous and discrete time, mainly in the case of a finite number of degrees of freedom ; second, to give illustrative examples on wind instruments, such as the vocal tract represented as a waveguide, and a sliding flute

    Current mode fractional order filters using VDTAs with Grounded capacitors

    Get PDF
    In this work, the design of current mode Fractional order filter using VDTAs (Voltage differencing trans-conductance amplifier) as an active element with grounded capacitors has been proposed. The approximate transfer functions of low and high pass filters of fractional order on the basis of the integer order transfer has been shown and the form of those functions of filters is also implemented using VDTA as an active building block. In this work, filters of the different sequence have been realized. The frequency domain simulation results of the proposed filters are obtained on Matlab and PSPICE with TSMC CMOS 180 nm technology parameters. Stability and sensitivity is also verifie

    Simulations of Incompressible MHD Turbulence

    Get PDF
    We simulate incompressible MHD turbulence in the presence of a strong background magnetic field. Our major conclusions are: 1) MHD turbulence is most conveniently described in terms of counter propagating shear Alfven and slow waves. Shear Alfven waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfven waves, as does a passive scalar. 2) MHD turbulence is anisotropic with energy cascading more rapidly along k_perp than along k_parallel, where k_perp and k_parallel refer to wavevector components perpendicular and parallel to the local magnetic field. Anisotropy increases with increasing k_perp. 3) MHD turbulence is generically strong in the sense that the waves which comprise it suffer order unity distortions on timescales comparable to their periods. Nevertheless, turbulent fluctuations are small deep inside the inertial range compared to the background field. 4) Decaying MHD turbulence is unstable to an increase of the imbalance between the flux of waves propagating in opposite directions along the magnetic field. 5) Items 1-4 lend support to the model of strong MHD turbulence by Goldreich & Sridhar (GS). Results from our simulations are also consistent with the GS prediction gamma=2/3. The sole notable discrepancy is that 1D power law spectra, E(k_perp) ~ k_perp^{-alpha}, determined from our simulations exhibit alpha ~ 3/2, whereas the GS model predicts alpha = 5/3.Comment: 56 pages, 30 figures, submitted to ApJ 59 pages, 31 figures, accepted to Ap

    Multiple Order Dual-Band Active Ring Filters with Composite Right/Left Handed Cells

    Get PDF
    In this paper, a novel dual-band active filter topology is presented. The non-linear phase response of a composite right/left-handed cell is used to achieve the desired dual-band performance. Additionally, the proposed structure based on coupled ring resonators yields a very compact solution in which high-order implementations can be easily obtained by cascading multiple rings. The theoretical principles of this type of filters are analyzed in detail. Finally, three prototypes based on first-, second- and third-order structures validate the feasibility of this type of filters. Good agreement between simulations and measurements has been achieved
    • …
    corecore