612 research outputs found

    Applications of equivalent representations of fractional- and integer-order linear time-invariant systems

    Get PDF
    Nicht-ganzzahlige - fraktionale - Ableitungsoperatoren beschreiben Prozesse mit Gedächtniseffekten, deshalb werden sie zur Modellierung verschiedenster Phänomene, z.B. viskoelastischen Verhaltens, genutzt. In der Regelungstechnik wird das Konzept vor allem wegen des erhöhten Freiheitsgrades im Frequenzbereich verwendet. Deshalb wurden in den vergangenen Dekaden neben einer Verallgemeinerung des PID-Reglers auch fortgeschrittenere Regelungskonzepte auf nicht-ganzzahlige Operatoren erweitert. Das Gedächtnis der nicht-ganzzahligen Ableitung ist zwar essentiell für die Modellbildung, hat jedoch Nachteile, wenn z.B. Zustände geschätzt oder Regler implementiert werden müssen: Das Gedächtnis führt zu einer langsamen, algebraischen Konvergenz der Transienten und da eine numerische Approximation ist speicherintensiv. Im Zentrum der Arbeit steht die Frage, mit welchen Maßnahmen sich das Konvergenzverhalten dieser nicht ganzzahligen Systeme beeinflussen lässt. Es wird vorgeschlagen, die Ordnung der nicht ganzzahligen Ableitung zu ändern. Zunächst werden Beobachter für verschiedene Klassen linearer zeitinvarianter Systeme entworfen. Die Entwurfsmethodik basiert dabei auf einer assoziierten Systemdarstellung, welche einen Differenzialoperator mit höherer Ordnung verwendet. Basierend auf dieser Systembeschreibung können Beobachter entworfen werden, welche das Gedächtnis besser mit einbeziehen und so schneller konvergieren. Anschließend werden ganzzahlige lineare zeitinvariante Systeme mit Hilfe nicht-ganzzahliger Operatoren dargestellt. Dies ermöglicht eine erhöhte Konvergenz im Zeitintervall direkt nach dem Anfangszeitpunkt auf Grund einer unbeschränkten ersten Ableitung. Die periodische Löschung des so eingeführten Gedächtnisses wird erzielt, indem die nicht ganzzahlige Dynamik periodisch zurückgesetzt wird. Damit wird der algebraischen Konvergenz entgegen gewirkt und exponentielle Stabilität erzielt. Der Reset reduziert den Speicherbedarf und induziert eine unterlagerte zeitdiskrete Dynamik. Diese bestimmt die Stabilität des hybriden nicht-ganzzahligen Systems und kann genutzt werden um den Frequenzgang für niedrige Frequenzen zu bestimmen. So lassen sich Beobachter und Regler für ganzzahlige System entwerfen. Im Rahmen des Reglerentwurfs können durch den Resets das Verhalten für niedrige und hohe Frequenzen in gewissen Grenzen getrennt voneinander entworfen werden.Non-integer, so-called fractional-order derivative operators allow to describe systems with infinite memory. Hence they are attractive to model various phenomena, e.g. viscoelastic deformation. In the field of control theory, both the higher degree of freedom in the frequency domain as well as the easy generalization of PID control have been the main motivation to extend various advanced control concepts to the fractional-order domain. The long term memory of these operators which helps to model real life phenomena, has, however, negative effects regarding the application as controllers or observers. Due to the infinite memory, the transients only decay algebraically and the implementation requires a lot of physical memory. The main focus of this thesis is the question of how to influence the convergence rates of these fractional-order systems by changing the type of convergence. The first part is concerned with the observer design for different classes of linear time-invariant fractional-order systems. We derive associated system representations with an increased order of differentiation. Based on these systems, the observers are designed to take the unknown memory into account and lead to higher convergence rates. The second part explores the representation of integer-order linear time-invariant systems in terms of fractional-order derivatives. The application of the fractional-order operator introduces an unbounded first-order derivative at the initial time. This accelerates the convergence for a short time interval. With periodic deletion of the memory - a reset of the fractional-order dynamics - the slow algebraic decay is avoided and exponential stability can be achieved despite the fractional-order terms. The periodic reset leads to a reduced implementation demand and also induces underlying discrete time dynamics which can be used to prove stability of the hybrid fractional-order system and to give an interpretation of the reset in the frequency domain for the low frequency signals. This concept of memory reset is applied to design an observer and improve fractional-order controllers for integer-order processes. For the controller design this gives us the possibility to design the high-frequency response independently from the behavior at lower frequencies within certain limits

    A Multi-Observer Based Estimation Framework for Nonlinear Systems under Sensor Attacks

    Full text link
    We address the problem of state estimation and attack isolation for general discrete-time nonlinear systems when sensors are corrupted by (potentially unbounded) attack signals. For a large class of nonlinear plants and observers, we provide a general estimation scheme, built around the idea of sensor redundancy and multi-observer, capable of reconstructing the system state in spite of sensor attacks and noise. This scheme has been proposed by others for linear systems/observers and here we propose a unifying framework for a much larger class of nonlinear systems/observers. Using the proposed estimator, we provide an isolation algorithm to pinpoint attacks on sensors during sliding time windows. Simulation results are presented to illustrate the performance of our tools.Comment: arXiv admin note: text overlap with arXiv:1806.0648

    Synthesis of Minimal Error Control Software

    Full text link
    Software implementations of controllers for physical systems are at the core of many embedded systems. The design of controllers uses the theory of dynamical systems to construct a mathematical control law that ensures that the controlled system has certain properties, such as asymptotic convergence to an equilibrium point, while optimizing some performance criteria. However, owing to quantization errors arising from the use of fixed-point arithmetic, the implementation of this control law can only guarantee practical stability: under the actions of the implementation, the trajectories of the controlled system converge to a bounded set around the equilibrium point, and the size of the bounded set is proportional to the error in the implementation. The problem of verifying whether a controller implementation achieves practical stability for a given bounded set has been studied before. In this paper, we change the emphasis from verification to automatic synthesis. Using synthesis, the need for formal verification can be considerably reduced thereby reducing the design time as well as design cost of embedded control software. We give a methodology and a tool to synthesize embedded control software that is Pareto optimal w.r.t. both performance criteria and practical stability regions. Our technique is a combination of static analysis to estimate quantization errors for specific controller implementations and stochastic local search over the space of possible controllers using particle swarm optimization. The effectiveness of our technique is illustrated using examples of various standard control systems: in most examples, we achieve controllers with close LQR-LQG performance but with implementation errors, hence regions of practical stability, several times as small.Comment: 18 pages, 2 figure

    Iterative learning control of integer and noninteger order: An overview

    Get PDF
    Ovaj rad daje pregledni prikaz nedavno prezentiranih i objavljenih rezultata autora koji se odnose na primenu iterativnog upravljanja putem učenja (ILC) i to celog reda kao i necelog reda. ILC predstavlja jedno od važnih oblasti u teoriji upravljanja i ono je moćan koncept upravljanja koji na iterativan način poboljšava ponašanje procesa koji su po prirodi ponovljivi. ILC je pogodno za upravljanje šire klase mehatroničkih sistema i posebno su pogodni za upravljanje kretanja robotskih sistema koji imaju važnu ulogu u biomehatroničkim, tehničkim sistemima koji uključuju primenu i vojnoj industriju itd. U prvom delu rada predstavljeni su rezultati koji se odnose na primenu višeg celobrojnog reda PD tipa sa pratećom numeričkom simulacijom. Takođe, još jedna druga ILC šema celobrojnog reda je predložena za dati robotski sistem sa tri stepena slobode u rešavanju zadatka praćenja što je i verifikovano kroz simulacioni primer. U drugom delu, predstavljeni su rezultati koji se odnose na primenu ILC frakcionog reda gde je prvo PDα tip predložen za linearni sistem frakcionog reda. Pokazano je da se pod odredjenim dovoljnim uslovima koji uključuju operatore učenja konvergencija datog sistema može biti garantovana. Takodje, PIβDα tip ILC upravljanja je predložen za linearni sistem frakcionog reda sa kašnjenjem. Konačno, dovoljni uslovi za konvergenciju u vremenskom domenu predloženog ILC upravljanja su dati odgovarajućom teoremom sa pratećim dokazom.This paper provides an overview of the recently presented and published results relating to the use of iterative learning control (ILC) based on and integer and fractional order. ILC is one of the recent topics in control theories and it is a powerful control concept that iteratively improves the behavior of processes that are repetitive in nature. ILC is suitable for controlling a wider class of mechatronic systems - it is especially suitable for motion control of robotic systems that attract and hold an important position in biomechatronical, technical systems involving the application, military industry, etc. The first part of the paper presents the results relating to the application of higher integer order PD type ILC with numerical simulation. Also, another integer order ILC scheme is proposed for a given robotic system with three degrees of freedom for task-space trajectory tracking where the effectiveness of the suggested control is demonstrated through a simulation procedure. In the second part, the results related to the application of the fractional order of ILC are presented where PDα type of ILC is proposed firstly, for a fractional order linear time invariant system. It is shown that under some sufficient conditions which include the learning operators, convergence of the learning system can be guaranteed. Also, PIβDα type of ILC is suggested for a fractional order linear time delay system. Finally, sufficient conditions for the convergence in the time domain of the proposed ILC were given by the corresponding theorem together with its proof
    corecore