318 research outputs found

    Laplacian Distribution and Domination

    Get PDF
    Let mG(I)m_G(I) denote the number of Laplacian eigenvalues of a graph GG in an interval II, and let γ(G)\gamma(G) denote its domination number. We extend the recent result mG[0,1)γ(G)m_G[0,1) \leq \gamma(G), and show that isolate-free graphs also satisfy γ(G)mG[2,n]\gamma(G) \leq m_G[2,n]. In pursuit of better understanding Laplacian eigenvalue distribution, we find applications for these inequalities. We relate these spectral parameters with the approximability of γ(G)\gamma(G), showing that γ(G)mG[0,1)∉O(logn)\frac{\gamma(G)}{m_G[0,1)} \not\in O(\log n). However, γ(G)mG[2,n](c+1)γ(G)\gamma(G) \leq m_G[2, n] \leq (c + 1) \gamma(G) for cc-cyclic graphs, c1c \geq 1. For trees TT, γ(T)mT[2,n]2γ(G)\gamma(T) \leq m_T[2, n] \leq 2 \gamma(G)

    Packing and covering in combinatorics

    Get PDF

    Uniform density in matroids, matrices and graphs

    Full text link
    We give new characterizations for the class of uniformly dense matroids, and we describe applications to graphic and real representable matroids. We show that a matroid is uniformly dense if and only if its base polytope contains a point with constant coordinates, and if and only if there exists a measure on the bases such that every element of the ground set has equal probability to be in a random basis with respect to this measure. As one application, we derive new spectral, structural and classification results for uniformly dense graphic matroids. In particular, we show that connected regular uniformly dense graphs are 11-tough and thus contain a (near-)perfect matching. As a second application, we show that strictly uniformly dense real representable matroids can be represented by projection matrices with constant diagonal and that they are parametrized by a subvariety of the real Grassmannian.Comment: 23 page

    Matching

    Get PDF
    corecore