2,849 research outputs found

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Dependent randomized rounding for clustering and partition systems with knapsack constraints

    Full text link
    Clustering problems are fundamental to unsupervised learning. There is an increased emphasis on fairness in machine learning and AI; one representative notion of fairness is that no single demographic group should be over-represented among the cluster-centers. This, and much more general clustering problems, can be formulated with "knapsack" and "partition" constraints. We develop new randomized algorithms targeting such problems, and study two in particular: multi-knapsack median and multi-knapsack center. Our rounding algorithms give new approximation and pseudo-approximation algorithms for these problems. One key technical tool, which may be of independent interest, is a new tail bound analogous to Feige (2006) for sums of random variables with unbounded variances. Such bounds are very useful in inferring properties of large networks using few samples

    Knapsack based Optimal Policies for Budget-Limited Multi-Armed Bandits

    Full text link
    In budget-limited multi-armed bandit (MAB) problems, the learner's actions are costly and constrained by a fixed budget. Consequently, an optimal exploitation policy may not be to pull the optimal arm repeatedly, as is the case in other variants of MAB, but rather to pull the sequence of different arms that maximises the agent's total reward within the budget. This difference from existing MABs means that new approaches to maximising the total reward are required. Given this, we develop two pulling policies, namely: (i) KUBE; and (ii) fractional KUBE. Whereas the former provides better performance up to 40% in our experimental settings, the latter is computationally less expensive. We also prove logarithmic upper bounds for the regret of both policies, and show that these bounds are asymptotically optimal (i.e. they only differ from the best possible regret by a constant factor)

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201
    corecore