4,259 research outputs found

    Fractional isomorphism of graphs

    Get PDF
    AbstractLet the adjacency matrices of graphs G and H be A and B. These graphs are isomorphic provided there is a permutation matrix P with AP=PB, or equivalently, A=PBPT. If we relax the requirement that P be a permutation matrix, and, instead, require P only to be doubly stochastic, we arrive at two new equivalence relations on graphs: linear fractional isomorphism (when we relax AP=PB) and quadratic fractional isomorphism (when we relax A=PBPT). Further, if we allow the two instances of P in A=PBPT to be different doubly stochastic matrices, we arrive at the concept of semi-isomorphism.We present necessary and sufficient conditions for graphs to be linearly fractionally isomorphic, we prove that quadratic fractional isomorphism is the same as isomorphism and we relate semi-isomorphism to isomorphism of bipartite graphs

    Fractional Homomorphism, Weisfeiler-Leman Invariance, and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem

    Get PDF
    Given a pair of graphs ? and ?, the problems of deciding whether there exists either a homomorphism or an isomorphism from ? to ? have received a lot of attention. While graph homomorphism is known to be NP-complete, the complexity of the graph isomorphism problem is not fully understood. A well-known combinatorial heuristic for graph isomorphism is the Weisfeiler-Leman test together with its higher order variants. On the other hand, both problems can be reformulated as integer programs and various LP methods can be applied to obtain high-quality relaxations that can still be solved efficiently. We study so-called fractional relaxations of these programs in the more general context where ? and ? are not graphs but arbitrary relational structures. We give a combinatorial characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to give a characterization of the notion of fractional isomorphism for relational structures in terms of the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result, we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy

    Quantum and non-signalling graph isomorphisms

    Get PDF
    We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can win with certainty iff the graphs G and H are isomorphic. We then define quantum and non-signalling isomorphisms by considering perfect quantum and non-signalling strategies for this game. We prove that non-signalling isomorphism coincides with fractional isomorphism, giving the latter an operational interpretation. We show that quantum isomorphism is equivalent to the feasibility of two polynomial systems obtained by relaxing standard integer programs for graph isomorphism to Hermitian variables. Finally, we provide a reduction from linear binary constraint system games to isomorphism games. This reduction provides examples of quantum isomorphic graphs that are not isomorphic, implies that the tensor product and commuting operator frameworks result in different notions of quantum isomorphism, and proves that both relations are undecidable.Peer ReviewedPostprint (author's final draft

    Fractional homomorphism, Weisfeiler-Leman invariance, and the Sherali-Adams hierarchy for the Constraint Satisfaction Problem

    Full text link
    Given a pair of graphs A\textbf{A} and B\textbf{B}, the problems of deciding whether there exists either a homomorphism or an isomorphism from A\textbf{A} to B\textbf{B} have received a lot of attention. While graph homomorphism is known to be NP-complete, the complexity of the graph isomorphism problem is not fully understood. A well-known combinatorial heuristic for graph isomorphism is the Weisfeiler-Leman test together with its higher order variants. On the other hand, both problems can be reformulated as integer programs and various LP methods can be applied to obtain high-quality relaxations that can still be solved efficiently. We study so-called fractional relaxations of these programs in the more general context where A\textbf{A} and B\textbf{B} are not graphs but arbitrary relational structures. We give a combinatorial characterization of the Sherali-Adams hierarchy applied to the homomorphism problem in terms of fractional isomorphism. Collaterally, we also extend a number of known results from graph theory to give a characterization of the notion of fractional isomorphism for relational structures in terms of the Weisfeiler-Leman test, equitable partitions, and counting homomorphisms from trees. As a result, we obtain a description of the families of CSPs that are closed under Weisfeiler-Leman invariance in terms of their polymorphisms as well as decidability by the first level of the Sherali-Adams hierarchy.Comment: Full version of a MFCS'21 pape

    Dimension Reduction via Colour Refinement

    Full text link
    Colour refinement is a basic algorithmic routine for graph isomorphism testing, appearing as a subroutine in almost all practical isomorphism solvers. It partitions the vertices of a graph into "colour classes" in such a way that all vertices in the same colour class have the same number of neighbours in every colour class. Tinhofer (Disc. App. Math., 1991), Ramana, Scheinerman, and Ullman (Disc. Math., 1994) and Godsil (Lin. Alg. and its App., 1997) established a tight correspondence between colour refinement and fractional isomorphisms of graphs, which are solutions to the LP relaxation of a natural ILP formulation of graph isomorphism. We introduce a version of colour refinement for matrices and extend existing quasilinear algorithms for computing the colour classes. Then we generalise the correspondence between colour refinement and fractional automorphisms and develop a theory of fractional automorphisms and isomorphisms of matrices. We apply our results to reduce the dimensions of systems of linear equations and linear programs. Specifically, we show that any given LP L can efficiently be transformed into a (potentially) smaller LP L' whose number of variables and constraints is the number of colour classes of the colour refinement algorithm, applied to a matrix associated with the LP. The transformation is such that we can easily (by a linear mapping) map both feasible and optimal solutions back and forth between the two LPs. We demonstrate empirically that colour refinement can indeed greatly reduce the cost of solving linear programs

    On the expressive power of homomorphism counts

    Get PDF
    A classical result by Lovász asserts that two graphs G and H are isomorphic if and only if they have the same left profile, that is, for every graph F, the number of homomorphisms from F to G coincides with the number of homomorphisms from F to H. Dvorák and later on Dell, Grohe, and Rattan showed that restrictions of the left profile to a class of graphs can capture several different relaxations of isomorphism, including equivalence in counting logics with a fixed number of variables (which contains fractional isomorphism as a special case) and co-spectrality (i.e., two graphs having the same characteristic polynomial). On the other side, a result by Chaudhuri and Vardi asserts that isomorphism is also captured by the right profile, that is, two graphs G and H are isomorphic if and only if for every graph F, the number of homomorphisms from G to F coincides with the number of homomorphisms from H to F. In this paper, we embark on a study of the restrictions of the right profile by investigating relaxations of isomorphism that can or cannot be captured by restricting the right profile to a fixed class of graphs. Our results unveil striking differences between the expressive power of the left profile and the right profile. We show that fractional isomorphism, equivalence in counting logics with a fixed number of variables, and co-spectrality cannot be captured by restricting the right profile to a class of graphs. In the opposite direction, we show that chromatic equivalence cannot be captured by restricting the left profile to a class of graphs, while, clearly, it can be captured by restricting the right profile to the class of all cliques.The research of Albert Atserias was partially supported by MICIN project PID2019-109137GBC22 (PROOFS). The research of Phokion Kolaitis and Wei-Lin Wu was partially supported by NSF Grant 1814152.Peer ReviewedPostprint (author's final draft
    • …
    corecore