2 research outputs found

    Optimization models for resource management in two-tier cellular networks

    Get PDF
    Macro-femtocell network is the most promising two-tier architecture for the cellular network operators because it can improve their current network capacity without additional costs. Nevertheless, the incorporation of femtocells to the existing cellular networks needs to be finely tuned in order to enhance the usage of the limited wireless resources, because the femtocells operate in the same spectrum as the macrocell. In this thesis, we address the resource optimization problem for the OFDMA two-tier networks for scenarios where femtocells are deployed using hybrid access policy. The hybrid access policy is a technique that could provide different levels of service to authorized users and visitors to the femtocell. This method reduces interference received by femtocell subscribers by granting access to nearby public users. These approaches should find a compromise between the level of access granted to public users and the impact on the subscribers satisfaction. This impact should be reduced in terms of performance or through economic compensation. In this work, two specific issues of an OFDMA two-tier cellular network are addressed. The first is the trade-off between macrocell resource usage efficiency and the fairness of the resource distribution among macro mobile users and femtocells. The second issue is the compromise between interference mitigation and granting access to public users without depriving the subscriber downlink transmissions. We tackle these issues by developing several resource allocation models for non-dense and dense femtocell deployment using Linear Programming and one evolutionary optimization method. In addition, the proposed resource allocation models determine the best suitable serving base station together with bandwidth and transmitted power per user in order to enhance the overall network capacity. The first two parts of this work cope with the resource optimization for non-dense deployment using orthogonal and co-channel allocation. Both parts aim at the maximization of the sum of the weighted user data rates. In the first part, several set of weights are introduced to prioritize the use of femtocells for subscribers and public users close to femtocells. In addition, macrocell power control is incorporated to enhance the power distribution among the active downlink transmissions and to improve the tolerance to the environmental noise. The second part enables the spectral reuse and the power adaptation is a three-folded solution that enhances the power distribution over the active downlink transmissions, improves the tolerance to the environmental noise and a given interference threshold, and achieves the target Quality of Service (QoS). To reduce the complexity of the resource optimization problem for dense deployment, the third part of this work divides the optimization problem into subproblems. The main idea is to divide the user and FC sets into disjoint sets taking into account their locations. Thus, the optimization problem can be solved independently in each OFDMA zone. This solution allows the subcarriers reuse among inner macrocell zones and femtocells located in outer macrocell zones and also between femtocells belonging to different clusters if they are located in the same zone. Macrocell power control is performed to avoid the cross-tier interference among macrocell inner zones and inside femtocells located in outer zones. Another well known method used to reduce the complexity of the resource optimization problem is the femtocell clustering. However, finding the optimal cluster configuration together with the resource allocation is a complex optimization problem due to variable number related to the possible cluster configurations. Therefore, the part four of this work deals with a heuristic cluster based resource allocation model and a motivation scheme for femtocell clustering through the allocation of extra resources for subscriber and “visitor user” transmissions. The cluster based resource allocation model maximizes the network throughput while keeping balanced clusters and minimizing the inter-cluster interference. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature

    Fractional Frequency Reuse based on Weigthed Proportional Fair for Uplink OFDMA

    No full text
    This paper discusses the resource allocation problemin an uplink multi-cell OFDMA system. The classical LTE modelconsiders two areas in the cell: the cell center and the cell borderand divides the resources in four sets. The users in the cells centerzones use the same subset of subcarriers whereas the users ofthe border zones use the remaining resources with a FractionalFrequency Reuse (FFR) equal to 3. Considering the same cellzones, we present in this work a different FFR model and provewith a theoretical analysis that the system throughput can beimproved. The resource allocation is then performed consideringthe Weighted Proportional Fair (WPF) algorithm. Simulationresults illustrate the performance improvements of the proposedsolution in comparison to the classical model. The fairness forthe different models is also studied and compared
    corecore