9,902 research outputs found

    J2 optimality and Multi-level Minimum Aberration Criteria in fractional factorial design

    Get PDF
    The desirable properties of fractional factorial design: Balance and orthogonal; was examined for near balance and near orthogonal using the balance coefficient and J2 optimality criteria respectively. Efficient orthogonal arrays with three factors having two, three and four levels were constructed with balance and orthogonal property for lowest common multiples of runs. The two forms of balance coefficient were used for classifying the designs into two and multi level minimum aberration criteria were used to determine designs with lesser aberration. It was observed that designs constructed using the maximum form of balance coefficient has the lesser aberration in both the generalized minimum aberration and minimum moment aberration criteria. The J2 – optimality criterion reveals that the higher the run of a design, the lesser it’s optimality value. Keywords: Balance Coefficient, fractional factorial, Generalized Minimum Aberration (GMA), J2 optimality and Minimum Moment Aberration (MMA).

    Design and analysis of fractional factorial experiments from the viewpoint of computational algebraic statistics

    Full text link
    We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Gr\"obner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.Comment: 16 page

    Uniform fractional factorial designs

    Full text link
    The minimum aberration criterion has been frequently used in the selection of fractional factorial designs with nominal factors. For designs with quantitative factors, however, level permutation of factors could alter their geometrical structures and statistical properties. In this paper uniformity is used to further distinguish fractional factorial designs, besides the minimum aberration criterion. We show that minimum aberration designs have low discrepancies on average. An efficient method for constructing uniform minimum aberration designs is proposed and optimal designs with 27 and 81 runs are obtained for practical use. These designs have good uniformity and are effective for studying quantitative factors.Comment: Published in at http://dx.doi.org/10.1214/12-AOS987 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Aberration in qualitative multilevel designs

    Full text link
    Generalized Word Length Pattern (GWLP) is an important and widely-used tool for comparing fractional factorial designs. We consider qualitative factors, and we code their levels using the roots of the unity. We write the GWLP of a fraction F{\mathcal F} using the polynomial indicator function, whose coefficients encode many properties of the fraction. We show that the coefficient of a simple or interaction term can be written using the counts of its levels. This apparently simple remark leads to major consequence, including a convolution formula for the counts. We also show that the mean aberration of a term over the permutation of its levels provides a connection with the variance of the level counts. Moreover, using mean aberrations for symmetric sms^m designs with ss prime, we derive a new formula for computing the GWLP of F{\mathcal F}. It is computationally easy, does not use complex numbers and also provides a clear way to interpret the GWLP. As case studies, we consider non-isomorphic orthogonal arrays that have the same GWLP. The different distributions of the mean aberrations suggest that they could be used as a further tool to discriminate between fractions.Comment: 16 pages, 1 figur

    Indicator function and complex coding for mixed fractional factorial designs

    Full text link
    In a general fractional factorial design, the nn-levels of a factor are coded by the nn-th roots of the unity. This device allows a full generalization to mixed-level designs of the theory of the polynomial indicator function which has already been introduced for two level designs by Fontana and the Authors (2000). the properties of orthogonal arrays and regular fractions are discussed
    • …
    corecore