288 research outputs found

    A comment on some new definitions of fractional derivative

    Full text link
    After reviewing the definition of two differential operators which have been recently introduced by Caputo and Fabrizio and, separately, by Atangana and Baleanu, we present an argument for which these two integro-differential operators can be understood as simple realizations of a much broader class of fractional operators, i.e. the theory of Prabhakar fractional integrals. Furthermore, we also provide a series expansion of the Prabhakar integral in terms of Riemann-Liouville integrals of variable order. Then, by using this last result we finally argue that the operator introduced by Caputo and Fabrizio cannot be regarded as fractional. Besides, we also observe that the one suggested by Atangana and Baleanu is indeed fractional, but it is ultimately related to the ordinary Riemann-Liouville and Caputo fractional operators. All these statements are then further supported by a precise analysis of differential equations involving the aforementioned operators. To further strengthen our narrative, we also show that these new operators do not add any new insight to the linear theory of viscoelasticity when employed in the constitutive equation of the Scott-Blair model.Comment: 10 pages, 1 figure, to appear in Nonlinear Dynamics, comment adde

    Hilfer-Prabhakar Derivatives and Some Applications

    Full text link
    We present a generalization of Hilfer derivatives in which Riemann--Liouville integrals are replaced by more general Prabhakar integrals. We analyze and discuss its properties. Further, we show some applications of these generalized Hilfer-Prabhakar derivatives in classical equations of mathematical physics, like the heat and the free electron laser equations, and in difference-differential equations governing the dynamics of generalized renewal stochastic processes

    Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative

    Full text link
    This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann-Liouville fractional derivative defined in Hilfer et al. , and the space derivative of second order by the Riesz-Feller fractional derivative, and adding a function Ï•(x,t)\phi(x,t). The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of Mittag-Leffler functions. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al., and the result very recently given by Tomovski et al.. At the end, extensions of the derived results, associated with a finite number of Riesz-Feller space fractional derivatives, are also investigated.Comment: 15 pages, LaTe
    • …
    corecore