39 research outputs found

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Get PDF
    The concept of biorthogonal partners has been introduced recently by the authors. The work presented here is an extension of some of these results to the case where the upsampling and downsampling ratios are not integers but rational numbers, hence, the name fractional biorthogonal partners. The conditions for the existence of stable and of finite impulse response (FIR) fractional biorthogonal partners are derived. It is also shown that the FIR solutions (when they exist) are not unique. This property is further explored in one of the applications of fractional biorthogonal partners, namely, the fractionally spaced equalization in digital communications. The goal is to construct zero-forcing equalizers (ZFEs) that also combat the channel noise. The performance of these equalizers is assessed through computer simulations. Another application considered is the all-FIR interpolation technique with the minimum amount of oversampling required in the input signal. We also consider the extension of the least squares approximation problem to the setting of fractional biorthogonal partners

    Biorthogonal partners and applications

    Get PDF
    Two digital filters H(z) and F(z) are said to be biorthogonal partners of each other if their cascade H(z)F(z) satisfies the Nyquist or zero-crossing property. Biorthogonal partners arise in many different contexts such as filterbank theory, exact and least squares digital interpolation, and multiresolution theory. They also play a central role in the theory of equalization, especially, fractionally spaced equalizers in digital communications. We first develop several theoretical properties of biorthogonal partners. We also develop conditions for the existence of biorthogonal partners and FIR biorthogonal pairs and establish the connections to the Riesz basis property. We then explain how these results play a role in many of the above-mentioned applications

    Equalization with oversampling in multiuser CDMA systems

    Get PDF
    Some of the major challenges in the design of new-generation wireless mobile systems are the suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within a single user created by the multipath propagation. Both of these problems were addressed successfully in a recent design of A Mutually Orthogonal Usercode-Receiver (AMOUR) for asynchronous or quasisynchronous code division multiple access (CDMA) systems. AMOUR converts a multiuser CDMA system into parallel single-user systems regardless of the multipath and guarantees ISI mitigation, irrespective of the channel locations. However, the noise amplification at the receiver can be significant in some multipath channels. In this paper, we propose to oversample the received signal as a way of improving the performance of AMOUR systems. We design Fractionally Spaced AMOUR (FSAMOUR) receivers with integral and rational amounts of oversampling and compare their performance with the conventional method. An important point that is often overlooked in the design of zero-forcing channel equalizers is that sometimes, they are not unique. This becomes especially significant in multiuser applications where, as we will show, the nonuniqueness is practically guaranteed. We exploit this flexibility in the design of AMOUR and FSAMOUR receivers and achieve noticeable improvements in performance

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Full text link

    Fractional biorthogonal partners in fractionally spaced equalizers

    Full text link

    Joint optimization of transceivers with fractionally spaced equalizers

    Get PDF
    In this paper we propose a method for joint optimization of transceivers with fractionally spaced equalization (FSE). We use the effective single-input multiple-output (SIMO) model for the fractionally spaced receiver. Since the FSE is used at the receiver, the optimized precoding scheme should be changed correspondingly. Simulation shows that the proposed method demonstrates remarkable improvement for jointly optimal linear transceivers as well as transceivers with decision feedback

    Wavelet Theory Demystified

    Get PDF
    In this paper, we revisit wavelet theory starting from the representation of a scaling function as the convolution of a B-spline (the regular part of it) and a distribution (the irregular or residual part). This formulation leads to some new insights on wavelets and makes it possible to rederive the main results of the classical theory—including some new extensions for fractional orders—in a self-contained, accessible fashion. In particular, we prove that the B-spline component is entirely responsible for five key wavelet properties: order of approximation, reproduction of polynomials, vanishing moments, multiscale differentiation property, and smoothness (regularity) of the basis functions. We also investigate the interaction of wavelets with differential operators giving explicit time domain formulas for the fractional derivatives of the basis functions. This allows us to specify a corresponding dual wavelet basis and helps us understand why the wavelet transform provides a stable characterization of the derivatives of a signal. Additional results include a new peeling theory of smoothness, leading to the extended notion of wavelet differentiability in the Lp L _{ p } -sense and a sharper theorem stating that smoothness implies order

    Equalization with oversampling in multiuser CDMA systems

    Full text link

    Caractérisation du bruit électromagnétique dans les tunnels miniers profonds et application de la méthode de débruitage

    Get PDF
    Comme les ressources minérales superficielles sont presque épuisées, les mines existantes rencontrent des difficultés pour maintenir leur production. Une solution relativement économique consiste à trouver des corps minéralisés à proximité des propriétés minières. Ces corps sont souvent hors de la capacité de détection des méthodes de prospection conventionnelles de surface en raison de leur taille ou de leur profondeur. Les trous de forage et les galeries des mines fournissent d'excellents chemins d'accès pour les méthodes d'exploration en profondeur. Le but de ce projet est d’aider l'industrie minière à résoudre les problèmes rencontrés lors de l'exploration en profondeur. La méthode électromagnétique transitoire (TEM) dans les galeries pourrait aider l'industrie minière à atteindre les objectifs d’extension en profondeur. L’un des défis pour effectuer des mesures TEM dans les galeries est l’espace restreint, qui nous force à utiliser de petites boucles d’émetteur. Par conséquent, les signaux sont plus affectés par le bruit. Dans ce projet, nous avons caractérisé les sources de bruit potentielles dans un environnement minier profond. Ceci facilitera le traitement des données et améliora précision de l'interprétation des données électromagnétiques. La méthode électromagnétique transitoire en forage est devenue une pratique omniprésente dans l'exploration en profondeur grâce à sa capacité à détecter des cibles dans un rayon de plusieurs centaines de mètres autour du forage. Une combinaison des mesures dans les galeries et dans les trous de forage, permet de chercher des informations géologiques en trois dimensions. Afin d'améliorer le rapport signal sur bruit des signaux électromagnétiques mesurés, nous avons développé une méthodologie de débruitage en utilisant les fonctions de la transformée en ondelettes discrète dans la boîte à outils d'ondelettes de Matlab. Les résultats ont démontré que l’application de la transformée en ondelettes discrète seule peut effectivement réduire le niveau de bruit, mais dans certain cas, une méthode supplémentaire est nécessaire pour éliminer les résidus de petites perturbations. Ensuite, une méthode d'ajustement de courbe, plus d'analyse de corrélation se sont ajoutées dans la procédure de traitement de données

    An Investigation of Orthogonal Wavelet Division Multiplexing Techniques as an Alternative to Orthogonal Frequency Division Multiplex Transmissions and Comparison of Wavelet Families and Their Children

    Get PDF
    Recently, issues surrounding wireless communications have risen to prominence because of the increase in the popularity of wireless applications. Bandwidth problems, and the difficulty of modulating signals across carriers, represent significant challenges. Every modulation scheme used to date has had limitations, and the use of the Discrete Fourier Transform in OFDM (Orthogonal Frequency Division Multiplex) is no exception. The restriction on further development of OFDM lies primarily within the type of transform it uses in the heart of its system, Fourier transform. OFDM suffers from sensitivity to Peak to Average Power Ratio, carrier frequency offset and wasting some bandwidth to guard successive OFDM symbols. The discovery of the wavelet transform has opened up a number of potential applications from image compression to watermarking and encryption. Very recently, work has been done to investigate the potential of using wavelet transforms within the communication space. This research will further investigate a recently proposed, innovative, modulation technique, Orthogonal Wavelet Division Multiplex, which utilises the wavelet transform opening a new avenue for an alternative modulation scheme with some interesting potential characteristics. Wavelet transform has many families and each of those families has children which each differ in filter length. This research consider comprehensively investigates the new modulation scheme, and proposes multi-level dynamic sub-banding as a tool to adapt variable signal bandwidths. Furthermore, all compactly supported wavelet families and their associated children of those families are investigated and evaluated against each other and compared with OFDM. The linear computational complexity of wavelet transform is less than the logarithmic complexity of Fourier in OFDM. The more important complexity is the operational complexity which is cost effectiveness, such as the time response of the system, the memory consumption and the number of iterative operations required for data processing. Those complexities are investigated for all available compactly supported wavelet families and their children and compared with OFDM. The evaluation reveals which wavelet families perform more effectively than OFDM, and for each wavelet family identifies which family children perform the best. Based on these results, it is concluded that the wavelet modulation scheme has some interesting advantages over OFDM, such as lower complexity and bandwidth conservation of up to 25%, due to the elimination of guard intervals and dynamic bandwidth allocation, which result in better cost effectiveness
    corecore