1,184 research outputs found

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Exponential Splines of Complex Order

    Full text link
    We extend the concept of exponential B-spline to complex orders. This extension contains as special cases the class of exponential splines and also the class of polynomial B-splines of complex order. We derive a time domain representation of a complex exponential B-spline depending on a single parameter and establish a connection to fractional differential operators defined on Lizorkin spaces. Moreover, we prove that complex exponential splines give rise to multiresolution analyses of L2(R)L^2(\mathbb{R}) and define wavelet bases for L2(R)L^2(\mathbb{R})

    Fractional Operators, Dirichlet Averages, and Splines

    Full text link
    Fractional differential and integral operators, Dirichlet averages, and splines of complex order are three seemingly distinct mathematical subject areas addressing different questions and employing different methodologies. It is the purpose of this paper to show that there are deep and interesting relationships between these three areas. First a brief introduction to fractional differential and integral operators defined on Lizorkin spaces is presented and some of their main properties exhibited. This particular approach has the advantage that several definitions of fractional derivatives and integrals coincide. We then introduce Dirichlet averages and extend their definition to an infinite-dimensional setting that is needed to exhibit the relationships to splines of complex order. Finally, we focus on splines of complex order and, in particular, on cardinal B-splines of complex order. The fundamental connections to fractional derivatives and integrals as well as Dirichlet averages are presented

    A fractional B-spline collocation method for the numerical solution of fractional predator-prey models

    Get PDF
    We present a collocation method based on fractional B-splines for the solution of fractional differential problems. The key-idea is to use the space generated by the fractional B-splines, i.e., piecewise polynomials of noninteger degree, as approximating space. Then, in the collocation step the fractional derivative of the approximating function is approximated accurately and efficiently by an exact differentiation rule that involves the generalized finite difference operator. To show the effectiveness of the method for the solution of nonlinear dynamical systems of fractional order, we solved the fractional Lotka-Volterra model and a fractional predator-pray model with variable coefficients. The numerical tests show that the method we proposed is accurate while keeping a low computational cost

    Fractional Splines and Wavelets

    Get PDF

    A fractional wavelet Galerkin method for the fractional diffusion problem

    Get PDF
    The aim of this paper is to solve some fractional differential problems hav- ing time fractional derivative by means of a wavelet Galerkin method that uses the fractional scaling functions introduced in a previpous paper as approximating functions. These refinable functions, which are a generalization of the fractional B-splines, have many interesting approximation properties. In particular, their fractional derivatives have a closed form that involves just the fractional difference operator. This allows us to construct accurate and efficient numerical methods to solve fractional differential problems. Some numerical tests on a fractional diffusion problem will be given
    • …
    corecore