1,866 research outputs found

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    A time dependent Stokes interface problem: well-posedness and space-time finite element discretization

    Full text link
    In this paper a time dependent Stokes problem that is motivated by a standard sharp interface model for the fluid dynamics of two-phase flows is studied. This Stokes interface problem has discontinuous density and viscosity coefficients and a pressure solution that is discontinuous across an evolving interface. This strongly simplified two-phase Stokes equation is considered to be a good model problem for the development and analysis of finite element discretization methods for two-phase flow problems. In view of the unfitted finite element methods that are often used for two-phase flow simulations, we are particularly interested in a well-posed variational formulation of this Stokes interface problem in a Euclidean setting. Such well-posed weak formulations, which are not known in the literature, are the main results of this paper. Different variants are considered, namely one with suitable spaces of divergence free functions, a discrete-in-time version of it, and variants in which the divergence free constraint in the solution space is treated by a pressure Lagrange multiplier. The discrete-in-time variational formulation involving the pressure variable for the divergence free constraint is a natural starting point for a space-time finite element discretization. Such a method is introduced and results of numerical experiments with this method are presented

    Vector potential methods

    Get PDF
    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed

    A fractional step method for computational aeroacoustics using weak imposition of Dirichlet boundary conditions

    Get PDF
    In this work we consider the approximation of the isentropic Navier–Stokes equations. The model we present is capable of taking into account acoustic and flow scales at once. After space and time discretizations have been chosen, it is very convenient from the computational point of view to design fractional step schemes in time so as to permit a segregated calculation of the problem unknowns. While these segregation schemes are well established for incompressible flows, much less is known in the case of isentropic flows. We discuss this issue in this article and, furthermore, we study the way to weakly impose Dirichlet boundary conditions via Nitsche’s method. In order to avoid spurious reflections of the acoustic waves, Nitsche’s method is combined with a non-reflecting boundary condition. Employing a purely algebraic approach to discuss the problem, some of the boundary contributions are treated explicitly and we explain how these are included in the different steps of the final algorithm. Numerical evidence shows that this explicit treatment does not have a significant impact on the convergence rate of the resulting time integration scheme. The equations of the formulation are solved using a subgrid scale technique based on a term-by-term stabilization.Peer ReviewedPostprint (author's final draft

    FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-006-0060-yWe present a general formulation for incompressible fluid flow analysis using the finite element method. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus method using a matrix form of the stabilization parameters. This allows to model a wide range of fluid flow problems for low and high Reynolds numbers flows without introducing a turbulence model. Examples of application to the analysis of incompressible flows with moderate and large Reynolds numbers are presented.Peer ReviewedPostprint (author's final draft

    Stabilized finite element formulations for the three-field viscoelastic fluid flow problem

    Get PDF
    The Finite Element Method (FEM) is a powerful numerical tool, that permits the resolution of problems defined by partial differential equations, very often employed to deal with the numerical simulation of multiphysics problems. In this work, we use it to approximate numerically the viscoelastic fluid flow problem, which involves the resolution of the standard Navier-Stokes equations for velocity and pressure, and another tensorial reactive-convective constitutive equation for the elastic part of the stress, that describes the viscoelastic nature of the fluid. The three-field (velocity-pressure-stress) mixed formulation of the incompressible Navier-Stokes problem, either in the elastic and in the non-elastic case, can lead to two different types of numerical instabilities. The first is associated with the incompressibility and loss of stability of the stress field, and the second with the dominant convection. The first type of instabilities can be overcome by choosing an interpolation for the unknowns that satisfies the two inf-sup conditions that restrict the mixed problem, whereas the dominant convection requires a stabilized formulation in any case. In this work, different stabilized schemes of the Sub-Grid-Scale (SGS) type are proposed to solve the three-field problem, first for quasi Newtonian fluids and then for solving the viscoelastic case. The proposed methods allow one to use equal interpolation for the problem unknowns and to stabilize dominant convective terms both in the momentum and in the constitutive equation. Starting from a residual based formulation used in the quasi-Newtonian case, a non-residual based formulation is proposed in the viscoelastic case which is shown to have superior behavior when there are numerical or geometrical singularities. The stabilized finite element formulations presented in the work yield a global stable solution, however, if the solution presents very high gradients, local oscillations may still remain. In order to alleviate these local instabilities, a general discontinuity-capturing technique for the elastic stress is also proposed. The monolithic resolution of the three-field viscoelastic problem could be extremely expensive computationally, particularly, in the threedimensional case with ten degrees of freedom per node. A fractional step approach motivated in the classical pressure segregation algorithms used in the two-field Navier-Stokes problem is presented in the work.The algorithms designed allow one the resolution of the system of equations that define the problem in a fully decoupled manner, reducing in this way the CPU time and memory requirements with respect to the monolithic case. The numerical simulation of moving interfaces involved in two-fluid flow problems is an important topic in many industrial processes and physical situations. If we solve the problem using a fixed mesh approach, when the interface between both fluids cuts an element, the discontinuity in the material properties leads to discontinuities in the gradients of the unknowns which cannot be captured using a standard finite element interpolation. The method presented in this work features a local enrichment for the pressure unknowns which allows one to capture pressure gradient discontinuities in fluids presenting different density values. The stability and convergence of the non-residual formulation used for viscoelastic fluids is analyzed in the last part of the work, for a linearized stationary case of the Oseen type and for the semi-discrete time dependent non-linear case. In both cases, it is shown that the formulation is stable and optimally convergent under suitable regularity assumptions.El Método de los Elementos Finitos (MEF) es una herramienta numérica de gran alcance, que permite la resolución de problemas definidos por ecuaciones diferenciales parciales, comúnmente utilizado para llevar a cabo simulaciones numéricas de problemas de multifísica. En este trabajo, se utiliza para aproximar numéricamente el problema del flujo de fluidos viscoelásticos, el cual requiere la resolución de las ecuaciones básicas de Navier-Stokes y otra ecuación adicional constitutiva tensorial de tipo reactiva-convectiva, que describe la naturaleza viscoelástica del fluido. La formulación mixta de tres campos (velocidad-presión-tensión) del problema de Navier-Stokes, tanto en el caso elástico como en el no-elástico, puede conducir a dos tipos de inestabilidades numéricas. El primer grupo, se asocia con la incompresibilidad del fluido y la pérdida de estabilidad del campo de tensiones, y el segundo con la convección dominante. El primer tipo de inestabilidades, se puede solucionar eligiendo un tipo de interpolación entre las incógnitas que satisfaga las dos condiciones inf-sup que restringen el problema mixto, mientras que la convección dominante requiere del uso de formulaciones estabilizadas en cualquier caso. En el trabajo, se proponen diferentes esquemas estabilizados del tipo SGS (Sub-Grid-Scales) para resolver el problema de tres campos, primero para fluidos del tipo cuasi-newtonianos y luego para resolver el caso viscoelástico. Los métodos estabilizados propuestos permiten el uso de igual interpolación entre las incógnitas del problema y estabilizan la convección dominante, tanto en la ecuación de momento como en la ecuación constitutiva. Comenzando desde una formulación de tipo residual usada en el caso cuasi-newtoniano, se propone una formulación no-residual para el caso viscoelástico que muestra un comportamiento superior en presencia de singularidades numéricas y geométricas. En general, una formulación estabilizada produce una solución estable global, sin embargo, si la solución presenta gradientes elevados, oscilaciones locales se pueden mantener. Con el objetivo de aliviar este tipo de inestabilidades locales, se propone adicionalmente una técnica general de captura de discontinuidades para la tensión elástica. La resolución monolítica del problema de tres campos viscoelástico puede llegar a ser extremadamente costosa computacionalmente, sobre todo, en el caso tridimensional donde se tienen diez grados de libertad por nodo. Un enfoque de paso fraccionado motivado en los algorítmos clásicos de segregación de la presión usados en el caso del problema de dos campos de Navier-Stokes, se presenta en el trabajo, el cual permite la resolución del sistema de ecuaciones que definen el problema de una manera completamente desacoplada, lo que reduce los tiempos de cálculo y los requerimientos de memoria, respecto al caso monolítico. La simulación numérica de interfaces móviles que envuelve los problemas de dos fluidos, es un tópico importante en un gran número de procesos industriales y situaciones físicas. Si se resuelve el problema utilizando un enfoque de mallas fijas, cuando la interfaz que separa los dos fluidos corta un elemento, la discontinuidad en las propiedades materiales da lugar a discontinuidades en los gradientes de las incógnitas que no pueden ser capturados utilizando una formulación estándar de interpolación. Un enriquecimiento local para la presión se presenta en el trabajo, el cual permite la captura de gradientes discontinuos en la presión, asociados a fluidos de diferentes densidades. La estabilidad y la convergencia de la formulación no-residual utilizada para fluidos viscoelásticos es analizada en la última parte del trabajo, para un caso linealizado estacionario del tipo Oseen y para un problema transitorio no-lineal semi-discreto. En ambos casos, se logra mostrar que la formulación es estable y de convergencia óptima bajo supuestos de regularidad adecuados.Postprint (published version
    corecore